Minimization of the Eigenvalues of the Dirichlet-Laplacian with a Diameter Constraint

In this paper we look for the domains minimizing the h-th eigenvalue of the Dirichlet-Laplacian $\lambda$ h with a constraint on the diameter. Existence of an optimal domain is easily obtained, and is attained at a constant width body. In the case of a simple eigenvalue, we provide non standard (i.e., non local) optimality conditions. Then we address the question whether or not the disk is an optimal domain in the plane, and we give the precise list of the 17 eigenvalues for which the disk is a local minimum. We conclude by some numerical simulations showing the 20 first optimal domains in the plane.

[1]  Braxton Osting,et al.  Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..

[2]  Didier Henrion,et al.  Semidefinite programming for optimizing convex bodies under width constraints , 2012, Optim. Methods Softw..

[3]  Edouard Oudet,et al.  Bodies of constant width in arbitrary dimension , 2007 .

[4]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[5]  I. Krasikov Approximations for the Bessel and Airy functions with an explicit error term , 2014 .

[6]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[7]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[8]  T. Bayen,et al.  Analytic Parametrization of Three-Dimensional Bodies of Constant Width , 2007 .

[9]  Dorin Bucur,et al.  Lipschitz Regularity of the Eigenfunctions on Optimal Domains , 2013, 1312.3449.

[10]  Amandine Berger,et al.  The eigenvalues of the Laplacian with Dirichlet boundary condition in $$\mathbb {R}^2$$R2 are almost never minimized by disks , 2015 .

[11]  Pedro R. S. Antunes Maximal and minimal norm of Laplacian eigenfunctions in a given subdomain , 2016 .

[12]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[13]  Bozhidar Velichkov,et al.  Existence and Regularity of Minimizers for Some Spectral Functionals with Perimeter Constraint , 2013, 1303.0968.

[14]  Marc Dambrine,et al.  On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. , 2002 .

[15]  Édouard Oudet Shape Optimization Under Width Constraint , 2013, Discret. Comput. Geom..

[16]  G. Buttazzo,et al.  Minimization of $\lambda_2(\Omega)$ with a perimeter constraint , 2009, 0904.2193.

[17]  Dorin Bucur,et al.  Minimization of the k-th eigenvalue of the Dirichlet Laplacian , 2012, Archive for Rational Mechanics and Analysis.

[18]  Jimmy Lamboley,et al.  Stability in shape optimization with second variation , 2019, Journal of Differential Equations.

[19]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[20]  Edouard Oudet,et al.  Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .

[21]  Dario Mazzoleni,et al.  Existence of minimizers for spectral problems , 2011 .

[22]  Andrea Colesanti,et al.  Brunn–Minkowski inequalities for variational functionals and related problems , 2005 .

[23]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[24]  Beniamin Bogosel Regularity result for a shape optimization problem under perimeter constraint , 2019, Communications in Analysis and Geometry.

[25]  Antoine Henrot Shape optimization and spectral theory , 2017 .