Backward steps in rigid body simulation

Physically based simulation of rigid body dynamics is commonly done by time-stepping systems forward in time. In this paper, we propose methods to allow time-stepping rigid body systems back-ward in time. Unfortunately, reverse-time integration of rigid bodies involving frictional contact is mathematically ill-posed, and can lack unique solutions. We instead propose time-reversed rigid body integrators that can sample possible solutions when unique ones do not exist. We also discuss challenges related to dissipation-related energy gain, sensitivity to initial conditions, stacking, constraints and articulation, rolling, sliding, skidding, bouncing, high angular velocities, rapid velocity growth from micro-collisions, and other problems encountered when going against the usual flow of time.

[1]  H. Reichenbach,et al.  The Direction of Time , 1959 .

[2]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[3]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[4]  James K. Hahn,et al.  Realistic animation of rigid bodies , 1988, SIGGRAPH.

[5]  David Baraff,et al.  Coping with friction for non-penetrating rigid body simulation , 1991, SIGGRAPH.

[6]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[7]  Hamid M. Lankarani,et al.  Continuous contact force models for impact analysis in multibody systems , 1994, Nonlinear Dynamics.

[8]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[9]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[10]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[11]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[12]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[13]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[14]  Brian Mirtich,et al.  Timewarp rigid body simulation , 2000, SIGGRAPH.

[15]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[16]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[17]  Victor J. Milenkovic,et al.  Optimization-based animation , 2001, SIGGRAPH.

[18]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[19]  Steven M. Seitz,et al.  Motion sketching for control of rigid-body simulations , 2003, TOGS.

[20]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[21]  Ioannis G. Kevrekidis,et al.  Computing in the past with forward integration , 2004 .

[22]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[23]  Dinesh K. Pai,et al.  Fast frictional dynamics for rigid bodies , 2005, SIGGRAPH 2005.

[24]  Rahil Baber,et al.  Rigid body simulation , 2006 .

[25]  Ronald Fedkiw,et al.  Dynamic simulation of articulated rigid bodies with contact and collision , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[27]  Greg Turk,et al.  Keyframe control of complex particle systems using the adjoint method , 2006, SCA '06.

[28]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[29]  Doug L. James,et al.  Controlling multibody dynamics via browsing and time reversal , 2008 .