Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries.

An anode material incorporating a sulfide is reported. SnS2 nanoparticles anchored onto reduced graphene oxide are produced via a chemical route and demonstrate an impressive capacity of 350 mA h g-1, exceeding the capacity of graphite. These results open the door for a new class of high capacity anode materials (based on sulfide chemistry) for potassium-ion batteries.

[1]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[2]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[3]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[4]  F. Pan,et al.  3D-hierarchical SnS nanostructures: controlled synthesis, formation mechanism and lithium-ion storage performance , 2015 .

[5]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[6]  Xin-bo Zhang,et al.  One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries , 2012 .

[7]  A. Gross,et al.  Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes , 2016 .

[8]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[9]  Chunjoong Kim,et al.  Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries , 2008 .

[10]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[11]  M. Fichtner,et al.  Magnesium anode for chloride ion batteries. , 2014, ACS applied materials & interfaces.

[12]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[13]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[14]  N. Munichandraiah,et al.  K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries , 2016 .

[15]  D. Linden Handbook Of Batteries , 2001 .

[16]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[17]  Q. Li,et al.  Plate-like SnS2nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties , 2012 .

[18]  J. Tu,et al.  Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries , 2007 .

[19]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[20]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[21]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[22]  Dimitri D. Vaughn,et al.  Formation of SnS nanoflowers for lithium ion batteries. , 2012, Chemical communications.

[23]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[24]  J. Xie,et al.  Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries. , 2013, ACS applied materials & interfaces.

[25]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[26]  Sudip Kumar Batabyal,et al.  Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes , 2014 .

[27]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[28]  Zhichuan J. Xu,et al.  A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes , 2017 .

[29]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[30]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[31]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[32]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[33]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.