Bifurcation analysis of travelling wave solutions in the nonlinear Klein-Gordon model with anharmonic coupling

Abstract By using bifurcation method of phase portraits and theory of dynamical systems to the nonlinear Klein–Gordon model, in the range 0 ⩽ r 1 , numbers of kink compactons, solitary wave, kink and anti-kink waves are given for each parameter condition. The parameter condition when the type of travelling wave changes is obtained.

[1]  Peter J. Olver,et al.  Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system: II. Complex analytic behavior and convergence to non-analytic solutions , 1997 .

[2]  S. Dusuel,et al.  From kinks to compactonlike kinks , 1998 .

[3]  P. Rosenau,et al.  Nonlinear dispersion and compact structures. , 1994, Physical review letters.

[4]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[5]  Jibin Li,et al.  TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS , 2002 .

[6]  Wei Xu,et al.  Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation , 2005 .

[7]  Jibin Li,et al.  Bifurcations of travelling wave solutions for the generalization form of the modified KdV equation , 2004 .

[8]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[9]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Philip Rosenau,et al.  On nonanalytic solitary waves formed by a nonlinear dispersion , 1997 .

[12]  Philip Rosenau,et al.  Compact and noncompact dispersive patterns , 2000 .

[13]  T. Kofané,et al.  Kink compactons in models with parametrized periodic double-well and asymmetric substrate potentials , 2004 .

[14]  Peter J. Olver,et al.  Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system , 1996 .

[15]  J. Walker,et al.  Book Reviews : THEORY OF BIFURCATIONS OF DYNAMIC SYSTEMS ON A PLANE A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier J. Wiley & Sons, New York , New York (1973) , 1976 .

[16]  Jibin Li,et al.  Smooth and non-smooth traveling waves in a nonlinearly dispersive equation , 2000 .

[17]  Jianwei Shen,et al.  Travelling wave solutions in a model of the helix polypeptide chains , 2004 .

[18]  M. Paulin,et al.  Solitonic structures in a nonlinear model with interparticle anharmonic interaction. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.