Robotic visual servoing of moving targets

We present a new image-based visual servoing scheme for tracking moving targets. This is achieved with a twofold approach. First, we devise a straightforward adaptation of a previously proposed depth observer to account for the fact that the target is not stationary. Second, we estimate the disturbance on the visual feature dynamics due to the target motion, and we add a related compensation term to the visual controller. In particular, the target velocity components parallel to the image plane are reconstructed using a disturbance observer, whereas the orthogonal component is retrieved from the measurement of the Focus Of Expansion. Comparative experiments show that the proposed method can improve over classical visual servoing schemes by 50% or more.

[1]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[2]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[3]  Ehud Rivlin,et al.  Finding the focus of expansion and estimating range using optical flow images and a matched filter , 2004, Machine Vision and Applications.

[4]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[5]  Antonio Torralba,et al.  Depth Estimation from Image Structure , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Hideki Ogawa,et al.  A volleyball playing robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[7]  Alessandro Astolfi,et al.  Observer design for range and orientation identification , 2010, Autom..

[8]  J. Aloimonos,et al.  Finding motion parameters from spherical motion fields (or the advantages of having eyes in the back of your head) , 1988, Biological Cybernetics.

[9]  Fumio Miyazaki,et al.  Realization of the table tennis task based on virtual targets , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[10]  Domenico Prattichizzo,et al.  Observer design via Immersion and Invariance for vision-based leader-follower formation control , 2010, Autom..

[11]  Peter Corke,et al.  Controller Design for High-Performance Visual Servoing , 1993 .

[12]  K. Sundaraj,et al.  Development of monocular vision system for depth estimation in mobile robot — Robot soccer , 2011, 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT).

[13]  Warren E. Dixon,et al.  Single Camera Structure and Motion , 2012, IEEE Transactions on Automatic Control.

[14]  Chen Shan-shan,et al.  Depth estimation via stereo vision using Birchfield's algorithm , 2011, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[15]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[16]  François Chaumette,et al.  Compensation of abrupt motion changes in target tracking by visual servoing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[17]  Jacques Gangloff,et al.  Visual servoing of a 6-DOF manipulator for unknown 3-d profile following , 1999, IEEE Trans. Robotics Autom..

[18]  Éric Marchand,et al.  VISP: a software environment for eye-in-hand visual servoing , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[20]  Michael Matthews,et al.  Uncalibrated visual servoing for intuitive human guidance of robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[21]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[22]  Giuseppe Oriolo,et al.  Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments , 2008, Int. J. Robotics Res..