A Combinatorial Formula for Kazhdan-Lusztig Polynomials of Sparse Paving Matroids

We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.

[1]  Dillon Mayhew,et al.  On the asymptotic proportion of connected matroids , 2011, Eur. J. Comb..

[2]  Jacob P. Matherne,et al.  A semi-small decomposition of the Chow ring of a matroid , 2020, Advances in Mathematics.

[3]  Benjamin Young,et al.  The equivariant Kazhdan-Lusztig polynomial of a matroid , 2016, J. Comb. Theory, Ser. A.

[4]  Joseph E. Bonin Basis-exchange properties of sparse paving matroids , 2013, Adv. Appl. Math..

[5]  Katie R. Gedeon Kazhdan-Lusztig Polynomials of Thagomizer Matroids , 2016, Electron. J. Comb..

[6]  G. Rota,et al.  On The Foundations of Combinatorial Theory: Combinatorial Geometries , 1970 .

[7]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[8]  Max D. Wakefield,et al.  Stirling numbers in braid matroid Kazhdan-Lusztig polynomials , 2018, Adv. Appl. Math..

[9]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[10]  Francesco Brenti Twisted Incidence Algebras and Kazhdan–Lusztig–Stanley Functions , 1999 .

[11]  Francesco Brenti P-kernels, IC bases and Kazhdan–Lusztig polynomials , 2003 .

[12]  Ben Elias,et al.  The Hodge theory of Soergel bimodules , 2012, 1212.0791.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Kyungyong Lee,et al.  A Combinatorial Formula for Kazhdan-Lusztig Polynomials of $\rho$-Removed Uniform Matroids , 2019, Electron. J. Comb..

[15]  Richard P. Stanley,et al.  Subdivisions and local $h$-vectors , 1992 .

[16]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[17]  Francesco Brenti A combinatorial formula for Kazhdan-Lusztig polynomials , 1994 .

[18]  Richard P. Stanley Polygon Dissections and Standard Young Tableaux , 1996, J. Comb. Theory, Ser. A.

[19]  Jacob P. Matherne,et al.  Singular Hodge theory for combinatorial geometries. , 2020, 2010.06088.

[20]  Peter Nelson,et al.  Almost all matroids are nonrepresentable , 2016, 1605.04288.

[21]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[22]  Max Wakefield,et al.  Intersection cohomology of the symmetric reciprocal plane , 2015, 1504.07348.

[23]  Ben Elias,et al.  The Kazhdan-Lusztig polynomial of a matroid , 2014, 1412.7408.

[24]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[25]  Philip B. Zhang,et al.  Equivariant Kazhdan-Lusztig polynomials of thagomizer matroids , 2019, Proceedings of the American Mathematical Society.

[26]  N. Proudfoot Equivariant Kazhdan–Lusztig polynomials of $q$-niform matroids , 2018, Algebraic Combinatorics.

[27]  Artem Vysogorets,et al.  Kazhdan-Lusztig Polynomials of Matroids Under Deletion , 2020, Electron. J. Comb..

[28]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[29]  Luis Ferroni,et al.  Matroid relaxations and Kazhdan-Lusztig non-degeneracy , 2021 .

[30]  Arthur L. B. Yang,et al.  Kazhdan-Lusztig polynomials of fan matroids, wheel matroids, and whirl matroids , 2018, J. Comb. Theory, Ser. A.

[31]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[32]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[33]  Alice L.L. Gao,et al.  The Kazhdan-Lusztig polynomials of uniform matroids , 2018, Adv. Appl. Math..

[34]  P. Polo Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups , 1999 .

[35]  Rudi Pendavingh,et al.  On the Number of Matroids Compared to the Number of Sparse Paving Matroids , 2014, Electron. J. Comb..

[36]  N. Proudfoot The algebraic geometry of Kazhdan–Lusztig–Stanley polynomials , 2017, EMS Surveys in Mathematical Sciences.

[37]  Katie R. Gedeon,et al.  Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures , 2016, 1611.07474.