Nonparametric Bayesian Modeling for Multivariate Ordinal Data

This article proposes a probability model for k-dimensional ordinal outcomes, that is, it considers inference for data recorded in k-dimensional contingency tables with ordinal factors. The proposed approach is based on full posterior inference, assuming a flexible underlying prior probability model for the contingency table cell probabilities. We use a variation of the traditional multivariate probit model, with latent scores that determine the observed data. In our model, a mixture of normals prior replaces the usual single multivariate normal model for the latent variables. By augmenting the prior model to a mixture of normals we generalize inference in two important ways. First, we allow for varying local dependence structure across the contingency table. Second, inference in ordinal multivariate probit models is plagued by problems related to the choice and resampling of cutoffs defined for these latent variables. We show how the proposed mixture model approach entirely removes these problems. We illustrate the methodology with two examples, one simulated dataset and one dataset of interrater agreement.

[1]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[2]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[3]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[4]  Ulf Olsson,et al.  Maximum likelihood estimation of the polychoric correlation coefficient , 1979 .

[5]  L. A. Goodman The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or Without Missing Entries , 1985 .

[6]  Timothy R. C. Read,et al.  Goodness-Of-Fit Statistics for Discrete Multivariate Data , 1988 .

[7]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[8]  Jim Albert,et al.  Bayesian estimation of the polychoric correlation coefficient , 1992 .

[9]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[10]  M. Newton,et al.  Bayesian Inference for Semiparametric Binary Regression , 1996 .

[11]  A. Raftery,et al.  Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .

[12]  Mary Kathryn Cowles,et al.  Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models , 1996, Stat. Comput..

[13]  Gerd Ronning,et al.  Efficient Estimation of Ordered Probit Models , 1996 .

[14]  B. Carlin,et al.  Bayesian Tobit Modeling of Longitudinal Ordinal Clinical Trial Compliance Data with Nonignorable Missingness , 1996 .

[15]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[16]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[17]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[18]  R. Kass,et al.  Nonconjugate Bayesian Estimation of Covariance Matrices and its Use in Hierarchical Models , 1999 .

[19]  Eric T. Bradlow,et al.  A hierarchical latent variable model for ordinal data from a customer satisfaction survey with no answer responses , 1999 .

[20]  Jim Albert,et al.  Ordinal Data Modeling , 2000 .

[21]  Peter E. Rossi,et al.  A Bayesian analysis of the multinomial probit model with fully identified parameters , 2000 .

[22]  D. Dey,et al.  Bayesian analysis for correlated Ordinal Data Models , 2000 .

[23]  S. Mukhopadhyay,et al.  BAYESIAN ANALYSIS OF BINARY REGRESSION USING SYMMETRIC AND ASYMMETRIC LINKS , 2000 .

[24]  Alan E. Gelfand,et al.  A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .

[25]  S. Chib,et al.  Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models , 2003 .

[26]  Dalene Stangl,et al.  A Bayesian Analysis of Ordinal Data Using Mixtures , 2007 .