Making digital phantoms with spectral and spatial light modulators for quantitative applications of hyperspectral optical medical imaging devices

We present a procedure to generate digital phantoms with a hyperspectral image projector (HIP) consisting of two liquid crystal on silicon (LCoS) spatial light modulators (SLMs). The digital phantoms are 3D image data cubes of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxy-hemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standards to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and inter-laboratory comparisons for quantitative biomedical imaging applications.

[1]  Ronald X. Xu,et al.  Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds , 2012, Biomedical optics express.

[2]  K. Zuzak,et al.  Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion. , 2002, Analytical chemistry.

[3]  Maritoni Litorja,et al.  Calibration and validation scheme for in vivo spectroscopic imaging of tissue oxygenation. , 2013, Advances in experimental medicine and biology.

[4]  C D Fitch,et al.  Hemozoin production by Plasmodium falciparum: variation with strain and exposure to chloroquine. , 1993, Biochimica et biophysica acta.

[5]  Philip J. Bos,et al.  Performance evaluation of a liquid-crystal-on-silicon spatial light modulator , 2004 .

[6]  Jeeseong Hwang,et al.  Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots , 2005, Journal of Cell Science.

[7]  Jun-Hu Cheng,et al.  Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. , 2015, Meat science.

[8]  Quanquan Mu,et al.  Dynamic wavefront correction with a fast liquid-crystal on silicon device of pure phase , 2012 .

[9]  Rainer Heintzmann,et al.  Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator. , 2014, Optics express.

[10]  Hartmut Gruber,et al.  Dynamisches System für die Aufnahme und optische Rekonstruktion von digitalen Hologrammen (Dynamical System for Recording and Optical Reconstruction of Digital Holograms) , 2006 .

[11]  Benjamin S. Goldschmidt,et al.  Photoacoustic spectroscopy of β-hematin , 2012, Journal of optics.

[12]  Tuan Vo-Dinh,et al.  Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection , 2006, Annals of Biomedical Engineering.

[13]  B. Hoogwerf,et al.  Evaluation of Diabetic Foot Ulcer Healing With Hyperspectral Imaging of Oxyhemoglobin and Deoxyhemoglobin , 2009, Diabetes Care.

[14]  Anthony J. Ratkowski,et al.  The sequential maximum angle convex cone (SMACC) endmember model , 2004, SPIE Defense + Commercial Sensing.

[15]  Z. You,et al.  Fundamentals of phase-only liquid crystal on silicon (LCOS) devices , 2014, Light: Science & Applications.

[16]  J. E. A. Landgrave,et al.  Recursive wavefront aberration correction method for LCoS spatial light modulators , 2011 .

[17]  Jeeseong Hwang,et al.  Absorption-Based Hyperspectral Imaging and Analysis of Single Erythrocytes , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Angelo Gulinatti,et al.  High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array , 2010, Biomedical optics express.

[19]  Dongsheng Wang,et al.  Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging , 2014, Journal of biomedical optics.

[20]  Anthony J. Ratkowski,et al.  The extension of endmember extraction to multispectral scenes , 2004, SPIE Defense + Commercial Sensing.

[21]  Benjamin Bird,et al.  Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. , 2010, The Analyst.