Indications of a possible symmetry and its breaking in a many-agent model obeying quantum statistics.

The results of computer simulations are presented which give evidence for the existence of an interesting symmetry in a many-agent model which demonstrates, in special cases, both Bose-Einstein and Fermi-Dirac statistics. This symmetry is expressed in the close vicinity of the mean values of the degree of ultrametricity and the fraction of isosceles of the sets of agent memories (histories) coded by two different information-loss coding schemes. It is shown that this (in some sense) approximate statistical supersymmetry is probably broken at low temperatures--below some condensation limit. This breaking leads to the appearance of specific coding schemes for boson and fermion histories. The meaning of this specificity is revealed by applying the interpretation of the many-agent model described earlier [A. A. Ezhov and A. Yu. Khrennikov, Phys. Rev. E 71, 016138 (2005)].

[1]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[2]  Vittorio Loreto,et al.  Non-equilibrium phase transition in negotiation dynamics , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Bose-Einstein condensation in a harmonic potential , 1996, cond-mat/9610005.

[4]  T. E. Hull,et al.  The factorization method , 1951 .

[5]  Vittorio Loreto,et al.  Nonequilibrium dynamics of language games on complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Igor Volovich,et al.  p-adic string , 1987 .

[7]  Bose–Einstein condensation, fluctuations, and recurrence relations in statistical mechanics , 2002, cond-mat/0211115.

[8]  P. Ramond Dual Theory for Free Fermions , 1971 .

[9]  D. J. Wallace,et al.  Dynamics and statistical mechanics of the Hopfield model , 1987 .

[10]  Edward Witten,et al.  Dynamical Breaking of Supersymmetry , 1981 .

[11]  Yi-Cheng Zhang,et al.  Emergence of cooperation and organization in an evolutionary game , 1997 .

[12]  A. Khrennikov,et al.  Agents with left and right dominant hemispheres and quantum statistics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Fionn Murtagh,et al.  Identifying the ultrametricity of time series , 2005 .

[14]  Y. Golfand,et al.  EXTENSION OF THE ALGEBRA OF POINCARE GROUP GENERATORS AND VIOLATION OF P INVARIANCE. , 1971 .

[15]  P. M. Hui,et al.  Crowd–anticrowd theory of the minority game , 2001 .

[16]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[17]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[18]  Giorgio Parisi,et al.  On the origin of ultrametricity , 2000 .

[19]  Fionn Murtagh,et al.  On Ultrametricity, Data Coding, and Computation , 2004, J. Classif..

[20]  H. C. Rosu,et al.  One-Parameter Darboux-Transformed Quantum Actions in Thermodynamics , 2001, quant-ph/0107043.

[21]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[22]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[23]  D. S. Kothari,et al.  Statistical mechanics and the partitions of numbers , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Dynamics of Money and Income Distributions , 2004, cond-mat/0407770.

[25]  A. Neveu,et al.  FACTORIZABLE DUAL MODEL OF PIONS. , 1971 .

[26]  M. Mézard,et al.  Wealth condensation in a simple model of economy , 2000, cond-mat/0002374.