Chemically Structured Products: Simultaneous model-based design of process and assisting structured materials

This thesis describes the development and application of a general model-based design framework for the simultaneous design of processes and products. Products in this case are referred to structured materials that assist the process by enhancing their performance. Conventionally, most process-product design problems employ an iterative, trial and error experiment-based procedure. Since experiments are usually expensive and time consuming, the search space for optimal design is limited. Applying computer-aided model-based framework has the potential to save time and expenses, and, widen the search domain for the design alternatives for the process and the products. The key factors for the simultaneous design of the processes and the assisting structured materials are the dependence of the process performance on the properties of the assisting structured material and the dependence of the assisting structured material properties on their microscopic structures. Thus, properties play a central role in the simultaneous process-product design. It is observed that, separating the constitutive equations representing the properties of the assisting structured material from the process model, can reduce the computational complexity of the design problem by not having to solve multilevel models (macro-level equations representing the process and micro-level equations representing the structured material) together. This is achieved by employing the reverse algorithm that first defines the design targets in terms of properties of the assisting structured material corresponding to a desired process performance (stage 1), and then determine structured materials that match the property targets (stage 2). In this way, the process model does not need a property model for the structured material, since the properties are the unknown variables in stage 1. Once the values for the property targets are obtained from the first stage, structured materials corresponding to these properties can be found using property models that relate the properties to the microscopic structure of the structured materials. The application of molecular modeling in generating property data for the assisting structured materials as a function of the microscopic structure of the structured materials has been investigated and found to add a new dimension to the simultaneous process-product design problem. It has been possible to generate very useful property data through this option. The application for the model-based design framework have been illustrated through case studies involving membrane-based separation processes. In particular, membranebased gas separation and membrane-based liquid separation with a phase change have been investigated. The design framework is however general enough to be applicable to other chemical process and product design problems.

[1]  Robert Rautenbach,et al.  Simplified calculation of gas-permeation hollow-fiber modules for the separation of binary mixtures , 1986 .

[2]  I. Beckman,et al.  POLYMERIC GAS SEPARATION MEMBRANES , 2005 .

[3]  Giulio C. Sarti,et al.  Role of heat and mass transfer in membrane distillation process , 1991 .

[4]  Chuanjie Wu,et al.  Prediction of Henry's law constants of small gas molecules in liquid ethylene oxide and ethanol using force field methods , 2005 .

[5]  K. Smolders,et al.  Terminology for Membrane Distillation , 1989 .

[6]  Jozef Bicerano,et al.  Prediction of Polymer Properties , 1996 .

[7]  Richard H. Boyd,et al.  Molecular-dynamics simulation of diffusion of small penetrants in polymers , 1993 .

[8]  D. Theodorou,et al.  A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. , 2002, Physical review letters.

[9]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[10]  K.S.M.S. Raghavarao,et al.  Mass transfer in osmotic membrane distillation , 2006 .

[11]  Efstratios N. Pistikopoulos,et al.  Property Modelling and Simulation for Product and Process Design , 2002 .

[12]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[13]  R. Baker Membrane Technology and Applications , 1999 .

[14]  Enrico Drioli,et al.  Theoretical and Experimental Study on Membrane Distillation in the Concentration of Orange Juice , 1994 .

[15]  J. S. Kim,et al.  A generalized model for the transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases , 1992 .

[16]  H. Takeuchi A jump motion of small molecules in glassy polymers: A molecular dynamics simulation , 1990 .

[17]  Werner Kunz,et al.  Osmotic evaporation through macroporous hydrophobic membranes: a survey of current research and applications , 1996 .

[18]  Mohamed Khayet,et al.  Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method , 2003 .

[19]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[20]  Marek Gryta,et al.  Osmotic MD and other membrane distillation variants , 2005 .

[21]  José M. Rodríguez-Maroto,et al.  On transport resistances in direct contact membrane distillation , 2007 .

[22]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[23]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[24]  I. Ortiz,et al.  Kinetic analysis of the vacuum membrane distillation of chloroform from aqueous solutions , 2000 .

[25]  Sten Bay Jørgensen,et al.  Integration of design and control through model analysis , 2002 .

[26]  Mohamed Khayet,et al.  Theory and experiments on sweeping gas membrane distillation , 2000 .

[27]  Anthony G. Fane,et al.  Heat and mass transfer in membrane distillation , 1987 .

[28]  Paul Calvert,et al.  Diffusion in polymers , 1977, Nature.

[29]  Rafiqul Gani,et al.  Molecular structure based estimation of properties for process design , 1996 .

[30]  R. Gani,et al.  Automatic Creation of Missing Groups through Connectivity Index for Pure-Component Property Prediction , 2005 .

[31]  Mohamed Khayet,et al.  Nature of flow on sweeping gas membrane distillation , 2000 .

[32]  A. A. Gusev,et al.  Dynamics of light gases in rigid matrices of dense polymers , 1993 .

[33]  J. S. Vrentas,et al.  Evaluation of the free‐volume theory of diffusion , 2003 .

[34]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[35]  Shyamal K. Nath,et al.  New forcefield parameters for branched hydrocarbons , 2001 .

[36]  S. A. Stern,et al.  Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations , 1998 .

[37]  Nikos Ch. Karayiannis,et al.  Detailed Atomistic Simulation of the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethylene terephthalate) and Poly(ethylene isophthalate) , 2004 .

[38]  R. L. Riley,et al.  Transport properties of cellulose acetate osmotic membranes , 1965 .

[39]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[40]  Peter Harriott,et al.  Unit Operations of Chemical Engineering , 2004 .

[41]  Ernest J. Henley,et al.  Separation Process Principles , 1998 .

[42]  朱长乐 渗透气化(Pervaporation)的进展和动向 , 1989 .

[43]  A.-H. Meniai,et al.  The selection of solvents for liquid-liquid extraction , 1992 .

[44]  Marek Gryta,et al.  Heat transport in the membrane distillation process , 1998 .

[45]  Rafiqul Gani,et al.  An integrated computer aided system for integrated design of chemical processes , 1997 .

[46]  C. F. King,et al.  Analysis of Gas Separation by Permeation in Hollow Fibers , 1977 .

[47]  Enrico Drioli,et al.  Membrane distillataion in the treatment of aqueous solutions , 1987 .

[48]  Donald R Paul,et al.  Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method , 1997 .

[49]  William J. Koros,et al.  Simulation of a hollow-fiber gas separator: the effects of process and design variables , 1985 .

[50]  Anne S. Meyer,et al.  Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation , 2004 .

[51]  Robert J. Lee,et al.  Separation of Liquid Mixtures by Permeation , 1961 .

[52]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[53]  Rafiqul Gani,et al.  SEPARATION PROCESS DESIGN AND SYNTHESIS BASED ON THERMODYNAMIC INSIGHTS , 1995 .

[54]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[55]  J. S. Vrentas,et al.  Effect of Solvent Size on Solvent Self-Diffusion in Polymer−Solvent Systems , 1996 .

[56]  S. Macchietto,et al.  Design on optimal solvents for liquid-liquid extraction and gas absorption processes , 1990 .

[57]  Nikos Ch. Karayiannis,et al.  Atomistic Monte Carlo simulation of strictly monodisperse long polyethylene melts through a generalized chain bridging algorithm , 2002 .

[58]  Kim Dam-Johansen,et al.  Characterization of microporous membranes for use in membrane contactors , 1997 .

[59]  George C. Derringer,et al.  A computer-based methodology for matching polymer structures with required properties , 1985 .

[60]  Fawzi Banat,et al.  Removal of benzene traces from contaminated water by vacuum membrane distillation , 1996 .

[61]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[62]  Norbert Attig,et al.  Introduction to Molecular Dynamics Simulation , 2004 .

[63]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[64]  K.S.M.S. Raghavarao,et al.  Mass transfer in osmotic membrane distillation of phycocyanin colorant and sweet-lime juice , 2006 .

[65]  Richard H. Boyd,et al.  Molecular packing and diffusion in polyisobutylene , 1991 .

[66]  Y. Lee,et al.  Pervaporation separation of water—ethanol through modified chitosan membranes. IV. Phosphorylated chitosan membranes , 1991 .

[67]  J. Caro,et al.  Basic Principles of Membrane Technology , 1998 .

[68]  Jorge A. Marrero,et al.  Group-Contribution-Based Estimation of Octanol/Water Partition Coefficient and Aqueous Solubility , 2002 .

[69]  K. Okazaki,et al.  Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer , 1990 .

[70]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[71]  S. Murad,et al.  Molecular dynamics simulation for Henry’s constant of oxygen in benzene , 2001 .

[72]  P. F. Onyon Polymer Handbook , 1972, Nature.

[73]  S. A. Stern,et al.  Polymers for gas separations: the next decade , 1994 .

[74]  Eva Sorensen,et al.  A general approach to modelling membrane modules , 2003 .

[75]  Benny D. Freeman,et al.  Modeling multicomponent gas separation using hollow‐fiber membrane contactors , 1998 .

[76]  Hans J Gorissen,et al.  Temperature changes involved in membrane gas separations , 1987 .

[77]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[78]  Giulio C. Sarti,et al.  Vacuum membrane distillation: Experiments and modeling , 1997 .

[79]  Rafiqul Gani,et al.  Computer-aided molecular design with combined molecular modeling and group contribution , 1999 .

[80]  S. Murad,et al.  A simple molecular dynamics simulation for calculating Henry's constant and solubility of gases in liquids , 2000 .

[81]  Robert Y. M. Huang,et al.  Concentration polarization in pervaporation separation processes , 1994 .

[82]  C. Gostoli,et al.  The heat and mass transfer phenomena in osmotic membrane distillation , 2002 .

[83]  M. Khayet,et al.  Heat and mass transfer in vacuum membrane distillation , 2004 .

[84]  R. Gani,et al.  Computer aided product design: problem formulations, methodology and applications , 1996 .

[85]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[86]  J. L. Franklin Prediction of Heat and Free Energies of Organic Compounds , 1949 .

[87]  Robert C. Reid,et al.  Estimation of critical properties with group contribution methods , 1984 .

[88]  K. Kobe The properties of gases and liquids , 1959 .

[89]  Giulio C. Sarti,et al.  Heat and mass transport resistances in vacuum membrane distillation per drop , 1999 .

[90]  Hisham Ettouney,et al.  Optimization of module configuration in membrane gas separation , 1996 .

[91]  Xianshe Feng,et al.  Estimation of activation energy for permeation in pervaporation processes , 1996 .

[92]  Ronald Hughes,et al.  A nonideal model for analysis of gas separation permeators , 1992 .

[93]  Ralf Dohrn,et al.  Atomistic simulation of poly(dimethylsiloxane) : Force field development, structure, and thermodynamic properties of polymer melt and solubility of n-alkanes, n-perfluoroalkanes, and noble and light gases , 2007 .

[94]  Gunnar Eigil Jonsson,et al.  Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD) , 2003 .

[95]  I. Economou Monte Carlo simulation of phase equilibria of aqueous systems , 2001 .

[96]  D. Theodorou,et al.  Henry's Constant Analysis for Water and Nonpolar Solvents from Experimental Data, Macroscopic Models, and Molecular Simulation , 2001 .

[97]  Nikos Ch. Karayiannis,et al.  An advanced Monte Carlo method for the equilibration of model long-chain branched polymers with a well-defined molecular architecture: Detailed atomistic simulation of an H-shaped polyethylene melt , 2003 .

[98]  J. L. Duda,et al.  Predicting polymer/solvent diffusion coefficients using free-volume theory , 1992 .

[99]  Xianshe Feng,et al.  Liquid Separation by Membrane Pervaporation: A Review , 1997 .

[100]  J. G. Wijmans The role of permeant molar volume in the solution-diffusion model transport equations , 2004 .

[101]  Giulio C. Sarti,et al.  Concentration of must through vacuum membrane distillation , 2002 .

[102]  L. Martinez-diez,et al.  A method to evaluate coefficients affecting flux in membrane distillation , 2000 .

[103]  Sun-Tak Hwang,et al.  Effect of diffusion on the model of a capillary gas permeator , 1987 .

[104]  Kiyotaka Sakai,et al.  Effects of temperature and concentration polarization on water vapour permeability for blood in membrane distillation , 1988 .

[105]  C. Gostoli,et al.  Thermal effects in osmotic distillation , 1999 .

[106]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .