In vivo molecular and genomic imaging: new challenges for imaging physics.

The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

[1]  C. Contag,et al.  Advances in in vivo bioluminescence imaging of gene expression. , 2002, Annual review of biomedical engineering.

[2]  Samuel A Wickline,et al.  Targeted ultrasonic contrast agents for molecular imaging and therapy. , 2001, Current problems in cardiology.

[3]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[4]  R. Weissleder,et al.  Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging , 2002, European Radiology.

[5]  Sanjiv S Gambhir,et al.  Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  S. Larson,et al.  Imaging transgene expression with radionuclide imaging technologies. , 2000, Neoplasia.

[7]  D. Weber,et al.  Ultra-high-resolution imaging of small animals: Implications for preclinical and research studies , 1999, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[8]  G. Entine,et al.  Structured CsI(Tl) scintillators for X-ray imaging applications , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[9]  B. Rice,et al.  In vivo imaging of light-emitting probes. , 2001, Journal of biomedical optics.

[10]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[11]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[12]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Blackband,et al.  Phased array imaging on a 4.7T/33cm animal research system , 2001 .

[14]  R. Weissleder Scaling down imaging: molecular mapping of cancer in mice , 2002, Nature Reviews Cancer.

[15]  R E Jacobs,et al.  Looking deeper into vertebrate development. , 1999, Trends in cell biology.

[16]  S. E. Derenzo,et al.  Precision measurement of annihilation point spread distributions for medically important positron emitters , 1979 .

[17]  E. Ritman,et al.  Molecular imaging in small animals—roles for micro‐CT , 2002, Journal of cellular biochemistry. Supplement.

[18]  Yves Charon,et al.  An original emission tomograph for in vivo brain imaging of small animals , 1996 .

[19]  Michael J. Paulus,et al.  High-resolution x-ray CT screening of mutant mouse models , 2000, Photonics West - Biomedical Optics.

[20]  L. Feinendegen,et al.  Biologic responses to low doses of ionizing radiation: Detriment versus hormesis. Part 2. Dose responses of organisms. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  Gary D Luker,et al.  Molecular imaging of gene expression and protein function in vivo with PET and SPECT , 2002, Journal of magnetic resonance imaging : JMRI.

[22]  Kanai S. Shah,et al.  Comparison of PbI2 and HgI2 for direct detection active matrix x-ray image sensors , 2002 .

[23]  Kenneth H. Wong,et al.  Dual-modality imaging of function and physiology. , 2002, Academic radiology.

[24]  R. Weissleder,et al.  Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. , 2001, Optics letters.

[25]  J. Links,et al.  Imaging dopamine receptors in the human brain by positron tomography. , 1984, Science.

[26]  E. Hoffman,et al.  Performance evaluation of A-SPECT: a high resolution desktop pinhole SPECT system for imaging small animals , 2002 .

[27]  R. Weissleder,et al.  Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. , 2002, Medical physics.

[28]  Andrew J. Reader,et al.  One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays , 2002 .

[29]  Alan J. Fischman,et al.  Development of a small animal PET imaging device with resolution approaching 1 mm , 1999 .

[30]  S. Webb,et al.  Cone-beam x-ray microtomography of small specimens. , 1994, Physics in medicine and biology.

[31]  B. H. Hasegawa,et al.  Design of combined X-ray CT and SPECT systems for small animals , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[32]  R. Leahy,et al.  High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. , 1998, Physics in medicine and biology.

[33]  Eva M Sevick-Muraca,et al.  Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. , 2002, Current opinion in chemical biology.

[34]  J. Yuhas Recovery from radiation-carcinogenic injury to the mouse ovary. , 1974, Radiation research.

[35]  Guimin Zhang,et al.  Integrated CT-SPECT system for small-animal imaging , 2000, SPIE Optics + Photonics.

[36]  S. Cherry,et al.  A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner. , 1999, Physics in medicine and biology.

[37]  W. Pardridge,et al.  CNS Drug Design Based on Principles of Blood‐Brain Barrier Transport , 1998, Journal of neurochemistry.

[38]  M J Paulus,et al.  High resolution X-ray computed tomography: an emerging tool for small animal cancer research. , 2000, Neoplasia.

[39]  S. Cherry,et al.  MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. , 2003, Physics in medicine and biology.

[40]  Yiping Shao,et al.  PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts , 1997, NMR in biomedicine.

[41]  Paul A Dayton,et al.  The magnitude of radiation force on ultrasound contrast agents. , 2002, The Journal of the Acoustical Society of America.

[42]  Thomas K. Lewellen,et al.  Performance characteristics of micro crystal element (MiCE) detectors , 2000 .

[43]  S. Cherry,et al.  Physics in Nuclear Medicine , 2004 .

[44]  E. Niki,et al.  Prevention of Type I Diabetes by Low-Dose Gamma Irradiation in NOD Mice , 2000, Radiation research.

[45]  Katherine W. Ferrara,et al.  A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection , 2002 .

[46]  R V Shohet,et al.  Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. , 2000, Circulation.

[47]  Simon R Cherry,et al.  Complementary emerging techniques: high-resolution PET and MRI , 2001, Current Opinion in Neurobiology.

[48]  Simon R. Cherry,et al.  Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[49]  M. Finer,et al.  Gene therapy: progress and challenges. , 2001, Cellular and molecular biology.

[50]  R. Blasberg Imaging Gene Expression and Endogenous Molecular Processes: Molecular Imaging , 2002, Journal of Cerebral Blood Flow and Metabolism.

[51]  Simon R Cherry,et al.  Simultaneous molecular and anatomical imaging of the mouse in vivo , 2002, Physics in medicine and biology.

[52]  H. Shirato,et al.  The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. , 1999, Radiation research.

[53]  Donald W. Wilson,et al.  Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  S. Arridge Optical tomography in medical imaging , 1999 .

[55]  Yong A. Yu,et al.  Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals , 2002, Molecular Genetics and Genomics.

[56]  E. Hoffman,et al.  Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. , 1999, Physics in medicine and biology.

[57]  Lars E Olsson,et al.  Hyperpolarized 13C MR angiography using trueFISP , 2003, Magnetic resonance in medicine.

[58]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[59]  D. Turnbull,et al.  In utero ultrasound backscatter microscopy of early stage mouse embryos. , 1999, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[60]  Ralph Weissleder,et al.  In vivo molecular target assessment of matrix metalloproteinase inhibition , 2001, Nature Medicine.

[61]  William W. Moses,et al.  Conceptual design of a high-sensitivity small animal PET camera with 4/spl pi/ coverage , 1999 .

[62]  K. Ley,et al.  Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin , 2001, Circulation.

[63]  Scott E. Fraser,et al.  In vivo visualization of gene expression using magnetic resonance imaging , 2000, Nature Biotechnology.

[64]  R. Gillies,et al.  In vivo molecular imaging , 2002, Journal of cellular biochemistry. Supplement.

[65]  L W Hedlund,et al.  Sensitivity and resolution in 3D NMR microscopy of the lung with hyperpolarized noble gases , 1999, Magnetic resonance in medicine.

[66]  S. Blackband,et al.  MR microscopy and high resolution small animal MRI: applications in neuroscience research , 2002, Progress in Neurobiology.

[67]  S. Gambhir,et al.  Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. , 2003, Cancer research.

[68]  M. Welch,et al.  Handbook of Radiopharmaceuticals: Radiochemistry and Applications , 2002 .

[69]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[70]  C. Nahmias,et al.  Dopamine visualized in the basal ganglia of living man , 1983, Nature.

[71]  Y. Charon,et al.  Radio-imaging for quantitative autoradiography in biology. , 1998, Nuclear medicine and biology.

[72]  A. Del Guerra,et al.  High spatial resolution small animal YAP-PET , 1998 .

[73]  Angelique Y. Louie,et al.  Recent advances in MRI: Novel contrast agents shed light on in vivo biochemistry , 2000 .

[74]  R. Blasberg PET imaging of gene expression. , 2002, European journal of cancer.

[75]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[76]  A. P. Jeavons,et al.  A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals , 1998 .

[77]  Eliana Gianolio,et al.  Insights into the use of paramagnetic Gd(III) complexes in MR‐molecular imaging investigations , 2002, Journal of magnetic resonance imaging : JMRI.

[78]  Markus Cremer,et al.  Evaluation of the TierPET system , 1998 .

[79]  Vasilis Ntziachristos,et al.  A submillimeter resolution fluorescence molecular imaging system for small animal imaging. , 2003, Medical physics.

[80]  Peter Bruyndonckx,et al.  Performance study of a 3D small animal PET scanner based on BaF2 crystals and a photo sensitive wire chamber , 1997 .

[81]  Stefan Eberl,et al.  A prototype coded aperture detector for small animal SPECT , 2001 .

[82]  Krzysztof P Bobinski,et al.  Seeing is believing: Non‐invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography , 2000, Journal of neuroscience research.

[83]  R. Hoffman,et al.  Visualizing gene expression by whole-body fluorescence imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R. N. Goble,et al.  Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. , 2001, Physics in medicine and biology.

[85]  James F. Young,et al.  MicroPET: a high resolution PET scanner for imaging small animals , 1996, IEEE Nuclear Science Symposium Conference Record.

[86]  S S Gambhir,et al.  Use of positron emission tomography in animal research. , 2001, ILAR journal.

[87]  R. Weissleder,et al.  Optical-based molecular imaging: contrast agents and potential medical applications , 2003, European Radiology.

[88]  P J Early,et al.  Use of diagnostic radionuclides in medicine. , 1995, Health Physics.

[89]  P. Nelson,et al.  From genomics to proteomics: techniques and applications in cancer research. , 2001, Trends in cell biology.

[90]  Arul Jayaraman,et al.  Advances in proteomic technologies. , 2002, Annual review of biomedical engineering.

[91]  Jurgen Seidel,et al.  Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability , 2001 .

[92]  Afonso C. Silva,et al.  In vivo neuronal tract tracing using manganese‐enhanced magnetic resonance imaging , 1998, Magnetic resonance in medicine.

[93]  B Chance,et al.  Near‐Infrared Images Using Continuous, Phase‐Modulated, and Pulsed Light with Quantitation of Blood and Blood Oxygenation a , 1998, Annals of the New York Academy of Sciences.

[94]  D Bhattacharjee,et al.  Deceleration of carcinogenic potential by adaptation with low dose gamma irradiation. , 2001, In vivo.

[95]  M. Klimas Positron emission tomography and drug discovery: contributions to the understanding of pharmacokinetics, mechanism of action and disease state characterization. , 2002, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[96]  Shaun S. Gleason,et al.  A new X-ray computed tomography system for laboratory mouse imaging , 1998 .

[97]  Raphaël Boisgard,et al.  Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. , 2002, Current pharmaceutical design.

[98]  K Wienhard,et al.  Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas , 2001, The Lancet.

[99]  A. Jeavons,et al.  A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).

[100]  A. Szalay,et al.  Imaging of light emission from the expression of luciferases in living cells and organisms: a review. , 2002, Luminescence : the journal of biological and chemical luminescence.

[101]  L. Hedlund,et al.  Magnetic resonance histology for morphologic phenotyping , 2002, Journal of magnetic resonance imaging : JMRI.

[102]  Magdalena Rafecas,et al.  A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals , 2001, European Journal of Nuclear Medicine.

[103]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[104]  Eric C. Frey,et al.  Development and evaluation of a MicroCT system for small animal imaging , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[105]  W. Oyen,et al.  Radiolabeled liposomes for scintigraphic imaging. , 2000, Progress in lipid research.

[106]  P. Dayton,et al.  Targeted imaging using ultrasound contrast agents , 2004, IEEE Engineering in Medicine and Biology Magazine.

[107]  E. Chérin,et al.  A new ultrasound instrument for in vivo microimaging of mice. , 2002, Ultrasound in medicine & biology.

[108]  K. Yoshioka,et al.  Silicon detector for a Compton camera in nuclear medical imaging , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[109]  R. Weissleder,et al.  A coded aperture for high-resolution nuclear medicine planar imaging with a conventional Anger camera: experimental results , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[110]  Roger Lecomte,et al.  Initial results from the Sherbrooke avalanche photodiode positron tomograph , 1996 .

[111]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[112]  G. Zavattini,et al.  A hyperspectral fluorescence imaging system for biological applications , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[113]  D. Kmfman Development of a Small Animal PET Imaging Device with Resolution Approaching lmm , 1999 .

[114]  Liefei Xu April THE PROTOTYPE , 1982, The Lancet.

[115]  Takashi,et al.  The green fluorescent protein (GFP) from Aequorea victo- , 2002 .

[116]  Dagmar Högemann,et al.  "Seeing inside the body": MR imaging of gene expression , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[117]  R Weissleder,et al.  In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. , 2000, Cancer research.

[118]  Michael J. Flynn,et al.  Microfocus X-ray sources for 3D microtomography , 1994 .

[119]  Margaret S. Saha,et al.  Design features and performance of a CsI(Na) array based gamma camera for small animal gene research , 1997, 1997 IEEE Nuclear Science Symposium Conference Record.

[120]  L W Hedlund,et al.  MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. , 2000, Magnetic resonance imaging.

[121]  B. Flannery,et al.  Three-Dimensional X-ray Microtomography , 1987, Science.

[122]  D. Kruse,et al.  A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[123]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[124]  A. Halpern,et al.  Massive parallelism, randomness and genomic advances , 2003, Nature Genetics.

[125]  Bernard Bendriem,et al.  In vivo imaging of oligonucleotides with positron emission tomography , 1998, Nature Medicine.

[126]  H H Barrett,et al.  Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera. , 2002, IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium.

[127]  Ariela Sofer,et al.  Evaluation of 3D reconstruction algorithms for a small animal PET camera , 1996 .

[128]  S Herault,et al.  Real-time 3-D ultrasound acquisition and display for cardiac volume and ejection fraction evaluation. , 2000, Ultrasound in medicine & biology.

[129]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[130]  G. Allan Johnson,et al.  Functional imaging of the lung , 1996, Nature Medicine.

[131]  Jonathan R. Lindner,et al.  Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to &agr;v-Integrins , 2003, Circulation.

[132]  S. Cherry,et al.  Combining anatomy and function: the path to true image fusion , 2001, European Radiology.

[133]  R. J. Fornaris,et al.  3D ultrasonic mapping of the microvasculature , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[134]  R. Weissleder,et al.  In vivo imaging of tumors with protease-activated near-infrared fluorescent probes , 1999, Nature Biotechnology.

[135]  Dominique Meyer,et al.  Iodinated Contrast Media: from Non-Specific to Blood-Pool Agents , 2002 .

[136]  David K. Stevenson,et al.  Bioluminescent indicators in living mammals , 1998, Nature Medicine.