PROCESAMIENTO DE LENGUAJE NATURAL PARA EL ANáLISIS DE LENGUAJE SUBJETIVO* NATuRAL LANguAgE PRoCESSINg FoR ThE ANALySIS oF SubjECTIVE LANguAgE

Summary We describe the application of natural language processing (NLP) technology to the analysis of subjective language. In particular we concentrate on the problem of opinion classification of textual material extracted from business-related data-sources. We study the derivation of sentiment values for words from the SentiWordNet lexical resource and use them for text interpretation to produce word, sentence, and textbased sentiment features for opinion classification. We use word-based and sentimentbased features to induce a classifier based on the use of Support Vector Machines achieving state of the art results. We also show preliminary experiments where the use of summaries before opinion classification provides competitive advantage over the

[1]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[2]  Horacio Saggion,et al.  Interpreting SentiWordNet for Opinion Classification , 2010, LREC.

[3]  Iadh Ounis,et al.  Overview of the TREC 2008 Blog Track , 2008, TREC.

[4]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[5]  Patrick Paroubek,et al.  DEFT'07 : une campagne d'évaluation en fouille d'opinion , 2009, Fouille de Données d'Opinions.

[6]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[7]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[8]  Arun Sundararajan,et al.  Opinion Mining using Econometrics: A Case Study on Reputation Systems , 2007, ACL.

[9]  Horacio Saggion,et al.  Extracting Opinions and Facts for Business Intelligence , 2009, Fouille de Données d'Opinions.

[10]  Horacio Saggion,et al.  SUMMA. A Robust and Adaptable Summarization Tool , 2008, TAL.

[11]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[12]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[13]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[14]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[15]  John Carroll,et al.  Unsupervised Classification of Sentiment and Objectivity in Chinese Text , 2008, IJCNLP.

[16]  Elena Lloret,et al.  Experiments on Summary-based Opinion Classification , 2010, HLT-NAACL 2010.