On Allometry Relations

There are a substantial number of empirical relations that began with the identification of a pattern in data; were shown to have a terse power-law description; were interpreted using existing theory; reached the level of "law" and given a name; only to be subsequently fade away when it proved impossible to connect the "law" with a larger body of theory and/or data. Various forms of allometry relations (ARs) have followed this path. The ARs in biology are nearly two hundred years old and those in ecology, geophysics, physiology and other areas of investigation are not that much younger. In general if X is a measure of the size of a complex host network and Y is a property of a complex subnetwork embedded within the host network a theoretical AR exists between the two when Y = aXb. We emphasize that the reductionistic models of AR interpret X and Y as dynamic variables, albeit the ARs themselves are explicitly time independent even though in some cases the parameter values change over time. On the other hand, the phenomenological models of AR are based on the statistical analysis of data and interpret X and Y as averages to yield the empirical AR: 〈Y〉 = a〈X〉b. Modern explanations of AR begin with the application of fractal geometry and fractal statistics to scaling phenomena. The detailed application of fractal geometry to the explanation of theoretical ARs in living networks is slightly more than a decade old and although well received it has not been universally accepted. An alternate perspective is given by the empirical AR that is derived using linear regression analysis of fluctuating data sets. We emphasize that the theoretical and empirical ARs are not the same and review theories "explaining" AR from both the reductionist and statistical fractal perspectives. The probability calculus is used to systematically incorporate both views into a single modeling strategy. We conclude that the empirical AR is entailed by the scaling behavior of the probability density, which is derived using the probability calculus.

[1]  Pablo A. Marquet,et al.  Scaling metabolic rate fluctuations , 2007, Proceedings of the National Academy of Sciences.

[2]  E. Weibel,et al.  An optimal bronchial tree may be dangerous , 2004, Nature.

[3]  T. McMahon,et al.  Size and Shape in Biology , 1973, Science.

[4]  G. C. Packard,et al.  Model Selection and Logarithmic Transformation in Allometric Analysis , 2008, Physiological and Biochemical Zoology.

[5]  P. A. Rikvold,et al.  Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[7]  Bruce J. West,et al.  Maximizing information exchange between complex networks , 2008 .

[8]  Lauro A. Barbosa,et al.  Allometric scaling laws of metabolism , 2006 .

[9]  A. Heusner Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? , 1982, Respiration physiology.

[10]  C D Murray,et al.  The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Han Olff,et al.  Demystifying the West, Brown & Enquist model of the allometry of metabolism , 2006 .

[12]  S. Gould,et al.  Interpretation of the Coefficient in the Allometric Equation , 1965, The American Naturalist.

[13]  J. Weiner,et al.  Interspecific Allometries Are by-Products of Body Size Optimization , 1997, The American Naturalist.

[14]  D. C. Freeman,et al.  Growth models and the expected distribution of fluctuating asymmetry , 2003 .

[15]  H. Feldman,et al.  The 3/4 mass exponent for energy metabolism is not a statistical artifact. , 1983, Respiration physiology.

[16]  P. Kaitaniemi How to Derive Biological Information from the Value of the Normalization Constant in Allometric Equations , 2008, PloS one.

[17]  Jerrold H. Zar,et al.  Calculation and Miscalculation of the Allometric Equation as a Model in Biological Data , 1968 .

[18]  H. Cyr,et al.  AN ILLUSION OF MECHANISTIC UNDERSTANDING , 2004 .

[19]  S. C. Hempleman,et al.  Spike firing allometry in avian intrapulmonary chemoreceptors: matching neural code to body size , 2005, Journal of Experimental Biology.

[20]  Michel A. Hofman,et al.  Size and Shape of the Cerebral Cortex in Mammals (Part 1 of 2) , 1985 .

[21]  R. Martin,et al.  Brain Size Allometry Ontogeny and Phylogeny , 1985 .

[22]  A. Maritan,et al.  On Hack's Law , 1996 .

[23]  J. Damuth Home range, home range overlap, and species energy use among herbivorous mammals , 1981 .

[24]  A L Goldberger,et al.  On a mechanism of cardiac electrical stability. The fractal hypothesis. , 1985, Biophysical journal.

[25]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[26]  Geoffrey B. West,et al.  The origin of universal scaling laws in biology , 1999 .

[27]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[28]  Bai-lian Li,et al.  Why do population density and inverse home range scale differently with body size?: Implications for ecosystem stability , 2005 .

[29]  F. W. Preston The Canonical Distribution of Commonness and Rarity: Part I , 1962 .

[30]  J. Setlow,et al.  Soviet Cellular Biophysics 1950-1960 , 1961, The Quarterly Review of Biology.

[31]  R. Plotnick,et al.  A multiplicative multifractal model for originations and extinctions , 2001, Paleobiology.

[32]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[33]  Eric J. Deeds,et al.  Curvature in metabolic scaling , 2010, Nature.

[34]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[35]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[36]  J. Damuth,et al.  Population density and body size in mammals , 1981, Nature.

[37]  黄亚明 Geneva Foundation for Medical Education and Research , 2010 .

[38]  H. Brand,et al.  Multiplicative stochastic processes in statistical physics , 1979 .

[39]  T Togawa,et al.  Theoretical relationship between the optimal models of the vascular tree. , 1974, Bulletin of mathematical biology.

[40]  Andrea Belgrano,et al.  Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants , 2002 .

[41]  Richard J. Smith Logarithmic transformation bias in allometry , 1993 .

[42]  B. McNab,et al.  Ecological factors affect the level and scaling of avian BMR. , 2009, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[43]  P. Bak,et al.  Self-organized criticality and punctuated equilibria , 1997, cond-mat/9701157.

[44]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[45]  P. Gingerich Arithmetic or geometric normality of biological variation: an empirical test of theory. , 2000, Journal of theoretical biology.

[46]  P. Macklem,et al.  Homeokinesis and short-term variability of human airway caliber. , 2001, Journal of applied physiology.

[47]  S. Gould,et al.  Size and Scaling in Human Evolution , 1974, Science.

[48]  J. Kozłowski,et al.  West, Brown and Enquist's model of allometric scaling again: the same questions remain , 2005 .

[49]  P. Kopietz,et al.  Introduction to the Functional Renormalization Group , 2010 .

[50]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .

[51]  Mark A. Changizi,et al.  Principles underlying mammalian neocortical scaling , 2001, Biological Cybernetics.

[52]  Bruce J. West,et al.  The fractal lung: Universal and species-related scaling patterns , 1990, Experientia.

[53]  A. Maritan,et al.  Physiology (communication arising): Allometric cascades , 2003, Nature.

[54]  P. Hall ONE‐DIMENSIONAL STABLE DISTRIBUTIONS (Translations of Mathematical Monographs 65) , 1987 .

[55]  B. Enquist Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. , 2002, Tree physiology.

[56]  E. Montroll,et al.  Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails , 1983 .

[57]  James H Brown,et al.  The fractal nature of nature: power laws, ecological complexity and biodiversity. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  Riisgård No foundation of a “3/4 power scaling law” for respiration in biology , 1998 .

[59]  G. Sacher,et al.  Relation of Lifespan to Brain Weight and Body Weight in Mammals , 2008 .

[60]  J. H. Jones Optimization of the mammalian respiratory system: symmorphosis versus single species adaptation. , 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[61]  Francis Galton,et al.  XII. The geometric mean, in vital and social statistics , 1879, Proceedings of the Royal Society of London.

[62]  E. Cope The primary factors of organic evolution , 2007 .

[63]  Bruce J. West,et al.  Physiology in fractal dimensions: Error tolerance , 2006, Annals of Biomedical Engineering.

[64]  D. S. Glazier A unifying explanation for diverse metabolic scaling in animals and plants , 2010, Biological reviews of the Cambridge Philosophical Society.

[65]  T. Gregory Dewey Fractals in Molecular Biophysics , 1998 .

[66]  O. Snell Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten , 1892, Archiv für Psychiatrie und Nervenkrankheiten.

[67]  Ian P. Woiwod,et al.  Temporal stability as a density-dependent species characteristic. , 1980 .

[68]  H. McSween,et al.  Planetary science (communication arising): Volcanism or aqueous alteration on Mars? , 2003, Nature.

[69]  R. Solé,et al.  Self-similarity of extinction statistics in the fossil record , 1997, Nature.

[70]  S. Lindstedt,et al.  Use of allometry in predicting anatomical and physiological parameters of mammals , 2002, Laboratory animals.

[71]  Zhao-qing Zhang,et al.  Microscopic theory of a dimer in random potential , 1982 .

[72]  L. Brillouin,et al.  Science and information theory , 1956 .

[73]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[74]  Thomas A. McMahon,et al.  Allometry and Biomechanics: Limb Bones in Adult Ungulates , 1975, The American Naturalist.

[75]  A. Goldberger,et al.  Beyond the principle of similitude: renormalization in the bronchial tree. , 1986, Journal of applied physiology.

[76]  Are allometry and macroevolution related , 2011 .

[77]  Russel D. Andrews,et al.  Physiology (communication arising (reply)): Why does metabolic rate scale with body size?/Allometric cascades , 2003, Nature.

[78]  C. G. Phillips,et al.  A diameter-based reconstruction of the branching pattern of the human bronchial tree. Part I. Description and application. , 1994, Respiration physiology.

[79]  Bruce J. West,et al.  Complex webs : anticipating the improbable , 2010 .

[80]  S. Agustí,et al.  An upper limit to the abundance of aquatic organisms , 1987, Oecologia.

[81]  T. Gisiger Scale invariance in biology: coincidence or footprint of a universal mechanism? , 2001, Biological reviews of the Cambridge Philosophical Society.

[82]  Y. Sugiyama,et al.  Prediction of the disposition ofβ-lactam antibiotics in humans from pharmacokinetic parameters in animals , 1984, Journal of Pharmacokinetics and Biopharmaceutics.

[83]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Ewald R. Weibel,et al.  Physiology: The pitfalls of power laws , 2002, Nature.

[85]  J. Willis Age and Area , 1926, The Quarterly Review of Biology.

[86]  S. Gould ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY , 1966, Biological reviews of the Cambridge Philosophical Society.

[87]  D. Montgomery,et al.  Channel Initiation and the Problem of Landscape Scale , 1992, Science.

[88]  A. Hill The heat of shortening and the dynamic constants of muscle , 1938 .

[89]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[90]  Heusner Aa,et al.  Size and power in mammals. , 1991 .

[91]  Phillip Cassey,et al.  Allometric exponents do not support a universal metabolic allometry. , 2007, Ecology.

[92]  B Suki,et al.  Branching design of the bronchial tree based on a diameter-flow relationship. , 1997, Journal of applied physiology.

[93]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[94]  Michael J. Reiss,et al.  The allometry of growth and reproduction , 1989 .

[95]  J. Huxley Problems of relative growth , 1932 .

[96]  Bai-Lian Li,et al.  Revising the distributive networks models of West, Brown and Enquist (1997) and Banavar, Maritan and Rinaldo (1999): metabolic inequity of living tissues provides clues for the observed allometric scaling rules. , 2005, Journal of theoretical biology.

[97]  E. Weibel,et al.  Architecture of the Human Lung , 1962, Science.

[98]  J. Brownlee Density and Death-Rate: Farr's Law , 1920 .

[99]  D. Wake,et al.  Size and shape in ontogeny and phylogeny , 1979, Paleobiology.

[100]  N. Rashevsky Mathematical Biophysics: Physicomathematical Foundations Of Biology , 2012 .

[101]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[102]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.

[103]  F. Bokma Evidence against universal metabolic allometry , 2004 .

[104]  H J JERISON,et al.  Quantitative Analysis of Evolution of the Brain in Mammals , 1961, Science.

[105]  Charles F Stevens,et al.  Darwin and Huxley revisited: the origin of allometry , 2009, Journal of biology.

[106]  C. D. Murray THE PHYSIOLOGICAL PRINCIPLE OF MINIMUM WORK APPLIED TO THE ANGLE OF BRANCHING OF ARTERIES , 1926, The Journal of general physiology.

[107]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[108]  A. Maritan,et al.  Scaling in ecosystems and the linkage of macroecological laws. , 2007, Physical review letters.

[109]  P. Painter Allometric scaling of the maximum metabolic rate of mammals: oxygen transport from the lungs to the heart is a limiting step , 2005, Theoretical Biology and Medical Modelling.

[110]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[111]  Functional, fractal nonlinear response with application to rate processes with memory, allometry, and population genetics , 2007, Proceedings of the National Academy of Sciences.

[112]  Eric J. Deeds,et al.  Sizing Up Allometric Scaling Theory , 2008, PLoS Comput. Biol..

[113]  B. Shea Relative growth of the limbs and trunk in the African apes. , 1981, American journal of physical anthropology.

[114]  C. O. Mohr,et al.  Comparative Populations of Game, Fur and Other Mammals , 1940 .

[115]  Bruce J. West Fractal Physiology and the Fractional Calculus: A Perspective , 2010, Front. Physio..

[116]  Stephanie Forrest,et al.  Scaling theory for information networks , 2008, Journal of The Royal Society Interface.

[117]  Daniel A. Braun,et al.  Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty , 2010, PLoS Comput. Biol..

[118]  Raul K. Suarez,et al.  Allometric cascade as a unifying principle of body mass effects on metabolism , 2002, Nature.

[119]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[120]  Ewald R. Weibel,et al.  Symmorphosis: On Form and Function in Shaping Life , 2000 .

[121]  B. Mandelbrot SELF-AFFINE FRACTAL SETS, I: THE BASIC FRACTAL DIMENSIONS , 1986 .

[122]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[123]  Stéphane Legendre,et al.  Evolutionary Entropy: A Predictor of Body Size, Metabolic Rate and Maximal Life Span , 2009, Bulletin of mathematical biology.

[124]  Statistical origin of allometry , 2011 .

[125]  L. Ginzburg,et al.  The May threshold and life-history allometry , 2010, Biology Letters.

[126]  M. Davis Palynology after Y2K—Understanding the Source Area of Pollen in Sediments , 2000 .

[127]  Lee-Ann C. Hayek,et al.  Surveying natural populations , 1997 .

[128]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[129]  Andrea Rinaldo,et al.  Ontogenetic growth (Communication arising): Modelling universality and scaling , 2002, Nature.

[130]  Bruce J. West,et al.  Stochastic ontogenetic growth model , 2012 .

[131]  B. West,et al.  The Lure of Modern Science Fractal Thinking , 1995 .

[132]  R. Peters The Ecological Implications of Body Size , 1983 .

[133]  L. Bertalanffy Quantitative Laws in Metabolism and Growth , 1957 .

[134]  A. Kerkhoff,et al.  Multiplicative by nature : Why logarithmic transformation is necessary in allometry , 2009 .

[135]  Bruce J. West Fractal Forms in Physiology , 1990 .

[136]  I Mahmood,et al.  Interspecies scaling of renally secreted drugs. , 1998, Life sciences.

[137]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[138]  Steven W. Buskirk,et al.  HOME RANGE, TIME, AND BODY SIZE IN MAMMALS' , 1986 .

[139]  A. Rinaldo Introduction to special issue on Rain, Rivers, and Turbulence: A view from hydrology , 2006 .

[140]  C. R. Taylor,et al.  Design of the mammalian respiratory system. I. Problem and strategy. , 1981, Respiration physiology.

[141]  Harold Boxenbaum,et al.  Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics , 1982, Journal of Pharmacokinetics and Biopharmaceutics.

[142]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[143]  B. Manaster,et al.  Techniques for estimating allometric equations , 1975, Journal of morphology.

[144]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[145]  P. Bak,et al.  Evolution as a self-organized critical phenomenon. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[146]  J. Weitz,et al.  Re-examination of the "3/4-law" of metabolism. , 2000, Journal of theoretical biology.

[147]  Bruce J. West,et al.  The Nonequilibrium Statistical Mechanics of Open and Closed Systems , 1990 .

[148]  Jeffrey M. Hausdorff,et al.  Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. , 1996, Journal of applied physiology.

[149]  S. Carpenter,et al.  Food Webs, Body Size, and Species Abundance in Ecological Community Description , 2005 .

[150]  D. S. Glazier,et al.  The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals , 2006 .

[151]  J. Gayon,et al.  History of the Concept of Allometry1 , 2000 .

[152]  W. Calder,et al.  Body Size and Longevity in Birds , 1976 .

[153]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[154]  Mark G. Tjoelker,et al.  Universal scaling of respiratory metabolism, size and nitrogen in plants , 2006, Nature.

[155]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[156]  Grigory Isaakovich Barenblatt Scaling Phenomena in Fluid Mechanics , 1995 .

[157]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[158]  S. Peckham New Results for Self‐Similar Trees with Applications to River Networks , 1995 .

[159]  Craig R. White,et al.  Allometric scaling of mammalian metabolism , 2005, Journal of Experimental Biology.

[160]  Neo D. Martinez,et al.  Stabilization of chaotic and non-permanent food-web dynamics , 2004 .

[161]  N. R. Glass Discussion of Calculation of Power Function with Special Reference to Respiratory Metabolism in Fish , 1969 .

[162]  Charles A Price,et al.  A general model for allometric covariation in botanical form and function , 2007, Proceedings of the National Academy of Sciences.

[163]  Geoffrey B. West,et al.  Yes, West, Brown and Enquist"s model of allometric scaling is both mathematically correct and biologically relevant , 2005 .

[164]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[165]  Bruce J. West,et al.  Fractal dimensionality of Lévy processes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[166]  Geoffrey B. West,et al.  The predominance of quarter-power scaling in biology , 2004 .

[167]  G. C. Packard On the use of logarithmic transformations in allometric analyses. , 2009, Journal of theoretical biology.

[168]  M. Kleiber Body size and metabolism , 1932 .

[169]  Jan Kozłowski,et al.  Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? , 2004 .

[170]  J. Tuszynski,et al.  Analytic theories of allometric scaling , 2011, Journal of Experimental Biology.

[171]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[172]  E. Dubois,et al.  Sur le rapport du poids de l'encéphale avec la grandeur du corps chez les mammifères , 1897 .

[173]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[174]  K. Niklas Plant allometry: is there a grand unifying theory? , 2004, Biological reviews of the Cambridge Philosophical Society.

[175]  S. Peckham,et al.  A reformulation of Horton's Laws for large river networks in terms of statistical self‐similarity , 1999 .

[176]  Bruce J. West,et al.  Publisher's Note: Beyond the Death of Linear Response: 1/f Optimal Information Transport [Phys. Rev. Lett. 105,040601 (2010)] , 2010 .

[177]  Han Olff,et al.  Revisiting the evolutionary origin of allometric metabolic scaling in biology , 2008 .

[178]  D. S. Glazier,et al.  Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals , 2005, Biological reviews of the Cambridge Philosophical Society.

[179]  S. Gould Geometric Similarity in Allometric Growth: A Contribution to the Problem of Scaling in the Evolution of Size , 1971, The American Naturalist.

[180]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.

[181]  H. J. Jerison Allometry, Brain Size, Cortical Surface, and Convolutedness , 1982 .

[182]  B. West Physiology in Fractal Dimensions , 1990 .

[183]  West,et al.  Complex fractal dimension of the bronchial tree. , 1991, Physical review letters.

[184]  L. Vinci The notebooks of Leonardo da Vinci. , 1952 .