Detection of circular polarization in light scattered from photosynthetic microbes

The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.

[1]  J. Hough,et al.  A search for chiral signatures on Mars. , 2005, Astrobiology.

[2]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[3]  J. Waterbury,et al.  Biological and ecological characterization of the marine unicellular Cyanobacterium Synechococcus , 1987 .

[4]  Paul W. Johnson,et al.  Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass1 , 1979 .

[5]  M. Potts,et al.  The ecology of cyanobacteria: their diversity in time and space (reviewed by T. Bailey Watts) , 2001 .

[6]  D. Deamer,et al.  Between Necessity and Probability: Searching for the Definition and Origin of Life , 2005, Origins of Life and Evolution of Biospheres.

[7]  G. Tranter,et al.  Diffuse Reflectance Circular Dichroism for the Detection of Molecular Chirality: An Application in Remote Sensing of Flora , 2004 .

[8]  I. Tinoco,et al.  Circular differential scattering can be an important part of the circular dichroism of macromolecules. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[10]  G. Garab Linear and Circular Dichroism , 1996 .

[11]  Neville J. Woolf,et al.  ASTRONOMICAL SEARCHES FOR EARTH-LIKE PLANETS AND SIGNS OF LIFE , 1998 .

[12]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[13]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[14]  J. B. Dalton,et al.  Near-infrared detection of potential evidence for microscopic organisms on Europa. , 2003, Astrobiology.

[15]  T. Cavalier-smith Origin of mitochondria by intracellular enslavement of a photosynthetic purple bacterium , 2006, Proceedings of the Royal Society B: Biological Sciences.

[16]  L. Kolokolova,et al.  Circular polarization in comets: Observations of Comet C/1999 S4 (LINEAR) and tentative interpretation , 2007, astro-ph/0703221.

[17]  Motohide Tamura,et al.  PlanetPol: A Very High Sensitivity Polarimeter , 2006 .

[18]  S. Pizzarello,et al.  Non-racemic amino acids in the Murray and Murchison meteorites. , 2000, Geochimica et cosmochimica acta.

[19]  J. Waterbury,et al.  [6] Isolation and growth of marine planktonic cyanobacteria , 1988 .

[20]  Rienk van Grondelle,et al.  An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G. Landis Martian water: are there extant halobacteria on Mars? , 2001, Astrobiology.

[22]  L. Kolokolova,et al.  Possible application of circular polarization for remote sensing of cosmic bodies , 1992 .

[23]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[24]  W. Bonner,et al.  Chirality and life , 1995, Origins of Life and Evolution of the Biosphere.

[25]  R. Kerby,et al.  Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system , 1992, Journal of bacteriology.

[26]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[27]  M. M. Pospergelis Spectroscopic Measurements of the Four Stokes Parameters for Light Scattered by Natural Objects. , 1968 .

[28]  R. Wolstencroft,et al.  Circular Polarization: Jupiter and Other Planets , 1971, Nature.

[29]  Govindjee,et al.  Spectral signatures of photosynthesis. I. Review of Earth organisms. , 2007, Astrobiology.

[30]  T. Gehrels,et al.  Planets, Stars and Nebulae Studied with Photopolarimetry , 1974 .

[31]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[32]  Ernest L. Eliel,et al.  Stereochemistry of Organic Compounds , 1962 .

[33]  N. C. Price,et al.  The use of circular dichroism in the investigation of protein structure and function. , 2000, Current protein & peptide science.

[34]  F. Chen,et al.  Diverse and Unique Picocyanobacteria in Chesapeake Bay, Revealed by 16S-23S rRNA Internal Transcribed Spacer Sequences , 2006, Applied and Environmental Microbiology.

[35]  J L Bada,et al.  Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct martian biota. , 1995, Icarus.

[36]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[37]  M. Kurik,et al.  Effective masses of electrons and holes in crystals of the system xβHgS-(1-x)HgSe [x=0−0.3] , 1969 .

[38]  C. Houssier,et al.  Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments , 1970 .

[39]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[40]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[41]  R. Park Advances in photosynthesis , 1962 .

[42]  B. Prézelin,et al.  Pico- and ultraplankton Sargasso Sea communities: variability and comparative distributions of Synechococcus spp. and algae , 1988 .

[43]  Shiladitya DasSarma,et al.  Extreme Halophiles Are Models for Astrobiology , 2006 .

[44]  J. Waterbury,et al.  Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium , 1979, Nature.

[45]  E. Ford,et al.  Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. , 2005, Astrobiology.

[46]  R. Popa Between Necessity and Probability: Searching for the Definition and Origin of Life , 2004 .