Zinc stress induces copper depletion in Acinetobacter baumannii

[1]  H. Karl,et al.  Additional file 3: of Zinc stress induces copper depletion in Acinetobacter baumannii , 2017 .

[2]  Ian T. Paulsen,et al.  TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life , 2016, Nucleic Acids Res..

[3]  T. Tenson,et al.  Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS. , 2016, Journal of proteome research.

[4]  D. Merrell,et al.  Copper Resistance of the Emerging Pathogen Acinetobacter baumannii , 2016, Applied and Environmental Microbiology.

[5]  G. Charrière,et al.  Copper homeostasis at the host vibrio interface: lessons from intracellular vibrio transcriptomics. , 2016, Environmental microbiology.

[6]  K. Schroder,et al.  Salmonella employs multiple mechanisms to subvert the TLR‐inducible zinc‐mediated antimicrobial response of human macrophages , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  V. Culotta,et al.  The Yin and Yang of copper during infection , 2016, JBIC Journal of Biological Inorganic Chemistry.

[8]  C. McDevitt,et al.  The First Histidine Triad Motif of PhtD Is Critical for Zinc Homeostasis in Streptococcus pneumoniae , 2015, Infection and Immunity.

[9]  C. McDevitt,et al.  ZnuA and zinc homeostasis in Pseudomonas aeruginosa , 2015, Scientific Reports.

[10]  M. Lübben,et al.  Distinct functions of serial metal‐binding domains in the Escherichia coli P1B‐ATPase CopA , 2015, Molecular microbiology.

[11]  G. Sutton,et al.  A novel method of consensus pan-chromosome assembly and large-scale comparative analysis reveal the highly flexible pan-genome of Acinetobacter baumannii , 2015, Genome Biology.

[12]  V. Cambiazo,et al.  Interplay between copper and zinc homeostasis through the transcriptional regulator Zur in Enterococcus faecalis. , 2015, Metallomics : integrated biometal science.

[13]  A. McEwan,et al.  The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens* , 2015, The Journal of Biological Chemistry.

[14]  U. H. Stroeher,et al.  Identification of genes essential for pellicle formation in Acinetobacter baumannii , 2015, BMC Microbiology.

[15]  A. McEwan,et al.  Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes , 2015, Scientific Reports.

[16]  A. Yamaguchi,et al.  Structural basis of RND-type multidrug exporters , 2015, Front. Microbiol..

[17]  I. Paulsen,et al.  A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene , 2015, Nucleic acids research.

[18]  Nicholas P. West,et al.  Manganese Homeostasis in Group A Streptococcus Is Critical for Resistance to Oxidative Stress and Virulence , 2015, mBio.

[19]  R. Couñago,et al.  Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae , 2015, Nature Communications.

[20]  Z. Deng,et al.  Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: epidemiology, resistance genetic determinants and potential virulence factors , 2015, Scientific Reports.

[21]  C. McDevitt,et al.  Manganese uptake and streptococcal virulence , 2015, BioMetals.

[22]  Karl A. Hassan,et al.  Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii , 2014, BMC Genomics.

[23]  C. McDevitt,et al.  Acquisition and Role of Molybdate in Pseudomonas aeruginosa , 2014, Applied and Environmental Microbiology.

[24]  Paolo Visca,et al.  Acinetobacter baumannii: evolution of a global pathogen. , 2014, Pathogens and disease.

[25]  C. McDevitt,et al.  Overlapping Functionality of the Pht Proteins in Zinc Homeostasis of Streptococcus pneumoniae , 2014, Infection and Immunity.

[26]  G. Wilharm,et al.  Impact of Acinetobacter baumannii Superoxide Dismutase on Motility, Virulence, Oxidative Stress Resistance and Susceptibility to Antibiotics , 2014, PloS one.

[27]  A. Peleg,et al.  A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. , 2014, The Journal of infectious diseases.

[28]  Eric P. Skaar,et al.  Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur , 2014, Journal of bacteriology.

[29]  A. McEwan,et al.  Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae , 2014, PloS one.

[30]  J. Mateos,et al.  Molecular mechanisms involved in the response to desiccation stress and persistence in Acinetobacter baumannii. , 2014, Journal of proteome research.

[31]  J. P. Henderson,et al.  Pathogenic adaptations to host-derived antibacterial copper , 2014, Front. Cell. Infect. Microbiol..

[32]  R. Couñago,et al.  AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae , 2014, Molecular microbiology.

[33]  Karl A. Hassan,et al.  Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins , 2013, Proceedings of the National Academy of Sciences.

[34]  A. Yan,et al.  Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis , 2013, Journal of bacteriology.

[35]  Karl A. Hassan,et al.  H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features , 2013, Infection and Immunity.

[36]  Karl A. Hassan,et al.  The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii , 2013, PloS one.

[37]  J. Martínez,et al.  RND multidrug efflux pumps: what are they good for? , 2013, Front. Microbio..

[38]  Eric P. Skaar,et al.  Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration , 2012, PLoS pathogens.

[39]  C. Mebane,et al.  Acute toxicity of cadmium, lead, zinc, and their mixtures to stream‐resident fish and invertebrates , 2012, Environmental toxicology and chemistry.

[40]  M. Sweet,et al.  Copper redistribution in murine macrophages in response to Salmonella infection. , 2012, The Biochemical journal.

[41]  L. Actis,et al.  The Acinetobacter baumannii entA Gene Located Outside the Acinetobactin Cluster Is Critical for Siderophore Production, Iron Acquisition and Virulence , 2012, PloS one.

[42]  M. McConnell,et al.  Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells , 2012, PloS one.

[43]  M. Petris,et al.  Copper Homeostasis at the Host-Pathogen Interface* , 2012, The Journal of Biological Chemistry.

[44]  J. Imlay,et al.  Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli , 2012, Applied and Environmental Microbiology.

[45]  J. Gaddy,et al.  Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria mellonella Caterpillars, and Mice , 2012, Infection and Immunity.

[46]  A. Peleg,et al.  Insights into Acinetobacter baumannii pathogenicity , 2011, IUBMB life.

[47]  M. Lawrence,et al.  A Molecular Mechanism for Bacterial Susceptibility to Zinc , 2011, PLoS pathogens.

[48]  Karl A. Hassan,et al.  Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. , 2011, FEMS microbiology letters.

[49]  M. Maguire,et al.  X-ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB. , 2011, Structure.

[50]  Karl A. Hassan,et al.  Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions , 2011, BMC Genomics.

[51]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[52]  J. Gaddy,et al.  Deciphering the iron response in Acinetobacter baumannii: A proteomics approach. , 2011, Journal of proteomics.

[53]  Sonja J. Prohaska,et al.  Proteinortho: Detection of (Co-)orthologs in large-scale analysis , 2011, BMC Bioinformatics.

[54]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[55]  J. Gaddy,et al.  Iron acquisition functions expressed by the human pathogen Acinetobacter baumannii , 2009, BioMetals.

[56]  M. Adams,et al.  Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter baumannii , 2008, Journal of bacteriology.

[57]  L. Dijkshoorn,et al.  An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii , 2007, Nature Reviews Microbiology.

[58]  D. Fu,et al.  Structure of the Zinc Transporter YiiP , 2007, Science.

[59]  M. Parsek,et al.  Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[60]  A. Ishihama,et al.  Characterization of Copper-Inducible Promoters Regulated by CpxA/CpxR in Escherichia coli , 2006, Bioscience, biotechnology, and biochemistry.

[61]  Mark Goulian,et al.  The Escherichia coli CpxA-CpxR Envelope Stress Response System Regulates Expression of the Porins OmpF and OmpC , 2005, Journal of bacteriology.

[62]  Akira Ishihama,et al.  Transcriptional response of Escherichia coli to external copper , 2005, Molecular microbiology.

[63]  K. Hantke Bacterial zinc transporters and regulators , 2001, Biometals.

[64]  J. Imlay,et al.  Pathways of oxidative damage. , 2003, Annual review of microbiology.

[65]  L. Actis,et al.  Detection and Analysis of Iron Uptake Components Expressed by Acinetobacter baumannii Clinical Isolates , 2003, Journal of Clinical Microbiology.

[66]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[67]  A. J. Worlock,et al.  ZntB Is a Novel Zn2+ Transporter in Salmonella enterica Serovar Typhimurium , 2002, Journal of bacteriology.

[68]  N. Murata,et al.  Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. , 2002, Current opinion in microbiology.

[69]  P. Langford,et al.  The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. , 2002, Microbiology.

[70]  C. Rensing,et al.  CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. , 2001, Biochemical and biophysical research communications.

[71]  F W Oehme,et al.  Microbial resistance to metals in the environment. , 2000, Ecotoxicology and environmental safety.

[72]  J. Imlay,et al.  The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli , 1999, Molecular microbiology.

[73]  H. Schat,et al.  Combination toxicology of copper, zinc, and cadmium in binary mixtures: Concentration‐dependent antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris , 1999 .

[74]  N. Anstey,et al.  Community-acquired Acinetobacter pneumonia in the Northern Territory of Australia. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[75]  J. Cha,et al.  Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[76]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[77]  Das Un Antibiotic-like action of essential fatty acids , 1985 .

[78]  U. Das Antibiotic-like action of essential fatty acids. , 1985, Canadian Medical Association journal.