Transparent, flexible, thin sensor surfaces for passive light-point localization based on two functional polymers

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[3]  G. R. Crane,et al.  Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films , 1971 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  Philip L. Taylor,et al.  Thermodynamics of pyroelectricity and piezoelectricity in polymers , 1981 .

[6]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[7]  PVDF and its blends , 1995 .

[8]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[9]  N. Inagaki,et al.  Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas , 2003 .

[10]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Kalyan Kumar Chattopadhyay,et al.  Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films , 2005 .

[13]  J. Joo,et al.  An approach to durable PVDF cantilevers with highly conducting PEDOT/PSS (DMSO) electrodes , 2005 .

[14]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[15]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[16]  V. Schmidt,et al.  Piezoelectric actuators employing PVDF coated with flexible PEDOT-PSS polymer electrodes , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[17]  M.. Mazzoni,et al.  A Large-Area PVDF Pyroelectric Sensor for CO $_{2}$ Laser Beam Alignment , 2007, IEEE Sensors Journal.

[18]  Barbara Stadlober,et al.  Synthesis of Ferroelectric Poly(Vinylidene Fluoride) Copolymer Films and their Application in Integrated Full Organic Pyroelectric Sensors , 2007 .

[19]  S. Bauer,et al.  Flexible large area ferroelectret sensors for location sensitive touchpads , 2008 .

[20]  G. Buchberger,et al.  Cellular ferroelectrets for flexible touchpads, keyboards and tactile sensors , 2008, 2008 IEEE Sensors.

[21]  Organic Electronic Interface Devices: Light‐ and Touch‐Point Localization using Flexible Large Area Organic Photodiodes and Elastomer Waveguides (Adv. Mater. 34/2009) , 2009 .

[22]  R. Koeppe,et al.  Light‐ and Touch‐Point Localization using Flexible Large Area Organic Photodiodes and Elastomer Waveguides , 2009 .

[23]  S. Bauer,et al.  Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin , 2009 .

[24]  P. Dubois,et al.  Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes , 2009, Journal of Microelectromechanical Systems.

[25]  Petr Bartu,et al.  Conformable large-area position-sensitive photodetectors based on luminescence-collecting silicone waveguides , 2010 .

[26]  L. Lediaev Finite element modeling of piezoelectric bimorphs with conductive polymer electrodes , 2010 .

[27]  Fully printed, flexible, large area organic optothermal sensors for human-machine-interfaces , 2010 .

[28]  Tobin J. Marks,et al.  Transparent electronics : from synthesis to applications , 2010 .

[29]  Benjamin C. K. Tee,et al.  Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates , 2012 .

[30]  FLEXIBLE AND TRANSPARENT PYROELECTRIC POLYMER SENSOR FOR LIGHT SPOT POSITION DETECTION , 2012 .

[31]  Benjamin C. K. Tee,et al.  Transparent, Optical, Pressure‐Sensitive Artificial Skin for Large‐Area Stretchable Electronics , 2012, Advanced materials.

[32]  A. Taubert,et al.  Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films , 2012 .

[33]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[34]  A Flexible Polymer Sensor for Light Point Localization , 2012 .

[35]  Matthew E. Edwards,et al.  Pyroelectric Properties of PVDF:MWCNT Nanocomposite Film for Uncooled Infrared Detectors , 2012 .

[36]  G. Buchberger,et al.  An Electromechanically-Coupled Bernoulli-Euler Beam-Theory Taking into Account the Finite Conductivity of the Electrodes for Sensing and Actuation , 2012 .

[37]  S. Shokat,et al.  電界応答性キトサン-ポリ(N,N-ジメチルアクリルアミド)セミIPNゲル膜およびそれらの誘電,熱および膨潤キャラクタリゼーション , 2013 .

[38]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[39]  L. Qu,et al.  Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. , 2013, Nanoscale.

[40]  Gerda Buchberger,et al.  Modeling of slender laminated piezoelastic beams with resistive electrodes—comparison of analytical results with three-dimensional finite element calculations , 2013 .

[41]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[42]  S. Bauer,et al.  Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon , 2013, Scientific Reports.

[43]  Bernhard Jakoby,et al.  Modeling of large-area sensors with resistive electrodes for passive stimulus-localization , 2013 .

[44]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[45]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[46]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[47]  Mari Zakrzewski,et al.  Printable, Transparent, and Flexible Touch Panels Working in Sunlight and Moist Environments , 2014 .

[48]  G. Tröster,et al.  Wafer-scale design of lightweight and transparent electronics that wraps around hairs , 2014, Nature Communications.

[49]  Mihai Irimia-Vladu,et al.  “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future , 2014 .

[50]  David Kim,et al.  FlexSense: a transparent self-sensing deformable surface , 2014, UIST.

[51]  U. Lemmer,et al.  RC-Constant in Organic Photodiodes Comprising Electrodes With a Significant Sheet Resistance , 2014, IEEE Photonics Technology Letters.

[52]  K. Müllen,et al.  Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors , 2015, Advanced materials.

[53]  Thomas H. Bointon,et al.  Transparent conductive graphene textile fibers , 2015, Scientific Reports.

[54]  Jin-Seok Park,et al.  Properties of CNTs coated by PEDOT:PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes , 2015 .

[55]  Shui-Tong Lee,et al.  Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells. , 2015, ACS applied materials & interfaces.

[56]  S. P. Heussler,et al.  Exploiting the IR Transparency of Graphene for Fast Pyroelectric Infrared Detection , 2015 .

[57]  Jianyong Ouyang,et al.  Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. , 2015, ACS applied materials & interfaces.

[58]  Zhong Lin Wang,et al.  Recent Progress in Electronic Skin , 2015, Advanced science.

[59]  Yuanyuan Song,et al.  Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. , 2015, Nanoscale.

[60]  Ling Zhang,et al.  Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT:PSS coating. , 2015, Chemical communications.

[61]  A. Chauhan,et al.  Pyroelectric materials for solar energy harvesting: a comparative study , 2015 .

[62]  Annalisa Bonfiglio,et al.  Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems , 2016, IEEE Transactions on Biomedical Engineering.