Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.

[1]  J. Valderrama,et al.  The simultaneous analysis of total nitrogen and total phosphorus in natural waters , 1981 .

[2]  Timothy R. Parsons,et al.  A manual of chemical and biological methods for seawater analysis , 1984 .

[3]  K. Soda,et al.  Selenocysteine. , 2020, Methods in enzymology.

[4]  P. Thompson,et al.  Survey of selenium requirements in marine phytoplankton , 1988 .

[5]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[6]  S. Demers,et al.  Particle analysis in oceanography , 1991 .

[7]  A. Flegal,et al.  Comparable levels of trace metal contamination in two semi-enclosed embayments: San Diego Bay and South San Francisco Bay , 1993 .

[8]  Raman Nambudripad,et al.  The ancient regulatory-protein family of WD-repeat proteins , 1994, Nature.

[9]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[10]  B. Friedrich,et al.  The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli , 1995, Journal of bacteriology.

[11]  F. Gong,et al.  Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. , 1995, FEMS microbiology letters.

[12]  B. Green,et al.  THE CHLOROPHYLL-CAROTENOID PROTEINS OF OXYGENIC PHOTOSYNTHESIS. , 1996, Annual review of plant physiology and plant molecular biology.

[13]  N. A. White,et al.  Extracellular phenoloxidase and peroxidase enzyme production during interspecific fungal interactions , 1997 .

[14]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[15]  M. Wink,et al.  Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. , 1997, Phytochemistry.

[16]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[17]  P. Falkowski,et al.  Brown Tide blooms in Long Island’s coastal waters linked to interannual variability in groundwater flow , 1997 .

[18]  E. Rhiel,et al.  The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family , 1998, Molecular and General Genetics MGG.

[19]  W. Konings,et al.  The ABC family of multidrug transporters in microorganisms. , 1998, Biochimica et biophysica acta.

[20]  Hans W. Paerl,et al.  Ecosystem Responses to Internal and Watershed Organic Matter Loading: Consequences for Hypoxia in the Eutrophying Neuse River Estuary, North Carolina, USA , 1998 .

[21]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[22]  G. Hallegraeff,et al.  Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances , 1999 .

[23]  S. Sañudo-Wilhelmy,et al.  Trace metals and dissolved organic carbon in an estuary with restricted river flow and a brown tide bloom , 1999 .

[24]  G. Hallegraeff,et al.  Comparative study of selenium requirements of three phytoplankton species: Gymnodinium catenatum, Alexandrium minutum (Dinophyta) and Chaetoceros cf. tenuissimus (Bacillariophyta) , 1999 .

[25]  G. McFadden,et al.  A Phylogenetic Assessment of the Eukaryotic Light-Harvesting Antenna Proteins, with Implications for Plastid Evolution , 1999, Journal of Molecular Evolution.

[26]  A. Haeseler,et al.  Characterization of fcp4 and fcp12, Two Additional Genes Encoding Light Harvesting Proteins of Cyclotella cryptica (Bacillariophyceae) and Phylogenetic Analysis of this Complex Gene Family , 2000 .

[27]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[28]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[29]  R. Durbin,et al.  Using GeneWise in the Drosophila annotation experiment. , 2000, Genome research.

[30]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[31]  W. Wang,et al.  Effects of major nutrient additions on metal uptake in phytoplankton. , 2001, Environmental pollution.

[32]  M. McBride,et al.  TRACE ELEMENT CONTENT OF SELECTED FERTILIZERS AND DAIRY MANURES AS DETERMINED BY ICP–MS , 2001 .

[33]  P. Facchini ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. , 2001, Annual review of plant physiology and plant molecular biology.

[34]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[35]  C. Gobler,et al.  Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens , 2002 .

[36]  J. Raven,et al.  NEW LIGHT ON THE SCALING OF METABOLIC RATE WITH THE SIZE OF ALGAE , 2002 .

[37]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[38]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[39]  Vadim N. Gladyshev,et al.  How Selenium Has Altered Our Understanding of the Genetic Code , 2002, Molecular and Cellular Biology.

[40]  M. Sieracki,et al.  A TRANSIENT BLOOM OF OSTREOCOCCUS (CHLOROPHYTA, PRASINOPHYCEAE) IN WEST NECK BAY, LONG ISLAND, NEW YORK , 2003 .

[41]  M. Lomas,et al.  Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii , 2003 .

[42]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[43]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[44]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[45]  L. Quarmby Signal transduction in the sexual life of Chlamydomonas , 1994, Plant Molecular Biology.

[46]  Hugh L. MacIntyre,et al.  Mediation of benthic-pelagic coupling by microphytobenthos: an energy- and material-based model for initiation of blooms of Aureococcus anophagefferens , 2004 .

[47]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[48]  L. Cutter,et al.  Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior , 2004 .

[49]  M. D. Keller,et al.  Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay , 2004 .

[50]  B. Brahamsha,et al.  Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism , 2004 .

[51]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[52]  V. Gladyshev,et al.  Different Catalytic Mechanisms in Mammalian Selenocysteine- and Cysteine-Containing Methionine-R-Sulfoxide Reductases , 2005, PLoS biology.

[53]  Jillian F. Banfield,et al.  Community Proteomics of a Natural Microbial Biofilm , 2005 .

[54]  J. Banfield,et al.  Community Proteomics of a Natural Microbial Biofilm , 2005, Science.

[55]  C. Gobler,et al.  A review of the causes, effects, and potential management of harmful brown tide blooms caused byAureococcus anophagefferens (Hargraves et sieburth) , 2005 .

[56]  H. Lenihan,et al.  Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas , 2006, Science.

[57]  R. Huber,et al.  Handbook of metalloproteins , 2006 .

[58]  A. Mayer Polyphenol oxidases in plants and fungi: going places? A review. , 2006, Phytochemistry.

[59]  V. Gladyshev,et al.  Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life , 2007, Genome Biology.

[60]  Manesh Shah,et al.  Molecular Dynamics of the Shewanella oneidensis Response to Chromate Stress*S , 2006, Molecular & Cellular Proteomics.

[61]  J. T. Turner,et al.  Ecology of harmful algae , 2006 .

[62]  R. Haselkorn,et al.  Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment , 2006, Proceedings of the National Academy of Sciences.

[63]  C. Gobler,et al.  POSITIVE FEEDBACK AND THE DEVELOPMENT AND PERSISTENCE OF ECOSYSTEM DISRUPTIVE ALGAL BLOOMS 1 , 2006 .

[64]  David L Tabb,et al.  Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. , 2006, Journal of proteome research.

[65]  Nicholas H. Putnam,et al.  The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation , 2007, Proceedings of the National Academy of Sciences.

[66]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[67]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[68]  Ashley M Buckle,et al.  A Common Fold Mediates Vertebrate Defense and Bacterial Attack , 2007, Science.

[69]  P. Mittl,et al.  Sel1-like repeat proteins in signal transduction. , 2007, Cellular signalling.

[70]  Hugh L. MacIntyre,et al.  PHYSIOLOGICAL RESPONSES DURING DARK SURVIVAL AND RECOVERY IN AUREOCOCCUS ANOPHAGEFFERENS (PELAGOPHYCEAE) 1 , 2007 .

[71]  C. Gobler,et al.  Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. , 2008, Harmful algae.

[72]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[73]  Jeff Shrager,et al.  UNDERSTANDING NITROGEN LIMITATION IN AUREOCOCCUS ANOPHAGEFFERENS (PELAGOPHYCEAE) THROUGH cDNA AND qRT‐PCR ANALYSIS 1 , 2008, Journal of phycology.

[74]  D. Caron,et al.  Immunofluorescence Flow Cytometry Technique for Enumeration of the Brown-Tide Alga, Aureococcus anophagefferens , 2008, Applied and Environmental Microbiology.

[75]  Mark A Moline,et al.  CORRELATED EVOLUTION OF GENOME SIZE AND CELL VOLUME IN DIATOMS (BACILLARIOPHYCEAE) 1 , 2008, Journal of phycology.

[76]  F. Partensky,et al.  E 2008, by the American Society of Limnology and Oceanography, Inc. Contrasting photoacclimation costs in ecotypes of the marine eukaryotic , 2022 .

[77]  C. Gobler,et al.  Eutrophication and Harmful Algal Blooms: A Scientific Consensus. , 2008, Harmful algae.

[78]  F. Sharom ABC multidrug transporters: structure, function and role in chemoresistance. , 2008, Pharmacogenomics.

[79]  K. Preussel Ecology of Harmful Algae, Ecological Studies, vol. 189, E. Granéli, J.T. Turner (Eds.). Springer, Berlin, Heidelberg (2008). 416 pp., €52.95, ISBN: 978-3-540-74009-4 , 2009 .

[80]  D. O. Hessen,et al.  Genome streamlining and the elemental costs of growth. , 2010, Trends in ecology & evolution.

[81]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[82]  B. Read,et al.  CHARACTERIZATION AND EXPRESSION ANALYSIS OF THE Lhcf GENE FAMILY IN EMILIANIA HUXLEYI (HAPTOPHYTA) REVEALS DIFFERENTIAL RESPONSES TO LIGHT AND CO2 1 , 2010 .

[83]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[84]  C. Gobler,et al.  Nutrient-regulated transcriptional responses in the brown tide-forming alga Aureococcus anophagefferens. , 2011, Environmental microbiology.

[85]  Huilin Yang,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Streptomyces mobaraensis DSM 40847, a Strain for Industrial Production of Microbial Transglutaminase , 2013, Genome Announcements.