Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy.

In this paper, I systematically investigated Micro-Cavity PhotoThermal Spectroscopy (MC-PTS), a novel technique for ultra-sensitive detection of chemical molecular species. I first derive the photothermal enhancement factor and noise characteristics of the technique using a generic theoretical model, followed by numerical analysis of a design example using chalcogenide glass micro-disk cavities. Guidelines for sensor material selection and device design are formulated based on the theoretical insight. The numerical analysis shows that this technique features a record photothermal enhancement factor of 10(4) with respect to conventional cavity-enhanced (multi-pass) infrared absorption spectroscopy, and is capable of detecting non-preconcentrated chemical vapor molecules down to the ppt level with a moderate cavity quality factor of 10(5) and a pump laser power of 0.1 W. Such performance qualifies this technique as one of the most sensitive methods for chemical vapor spectroscopic analysis.

[1]  S. Arnold,et al.  Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. , 2010, Optics express.

[2]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[3]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[4]  Yasha Yi,et al.  Reflection-mode sensing using optical microresonators , 2009 .

[5]  A. Rogalski,et al.  Chapter 2 – Comparison of photon and thermal detector performance , 2002 .

[6]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .

[7]  Tobias Gensty,et al.  Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers , 2005 .

[8]  Z Rong,et al.  Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution. , 1992, Applied optics.

[9]  Joel M. Harris,et al.  Laser induced thermal lens effect for calorimetric trace analysis , 1979 .

[10]  R. Baets,et al.  Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators , 2009, IEEE Photonics Journal.

[11]  A Densmore,et al.  Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. , 2009, Optics letters.

[12]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[13]  Juejun Hu Planar chalcogenide glass materials and devices , 2009 .

[14]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[15]  G. S. Murugan,et al.  Chalcogenide glass microspheres; their production, characterization and potential. , 2007, Optics express.

[16]  L. Ebdon,et al.  Photothermal spectroscopy methods for chemical analysis , 1997 .

[17]  Vladimir S. Ilchenko,et al.  High-Q whispering-gallery mode sensor in liquids , 2002, SPIE LASE.

[18]  A. Doraiswamy,et al.  Photoinduced structural relaxation in chalcogenide glasses , 2003 .

[19]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[20]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[21]  Ishwar D. Aggarwal,et al.  Fabrication of low-loss IR-transmitting Ge/sub 30/As/sub 10/Se/sub 30/Te/sub 30/ glass fibers , 1994 .

[22]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[23]  Jeonghoon Lee,et al.  Photothermal Interferometric Aerosol Absorption Spectrometry , 2007 .

[24]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[25]  Juejun Hu,et al.  Optical trapping of nanoparticles in resonant cavities: optical tweezers with single particle selectivity , 2009 .

[26]  T. Ikegami Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200°C , 2000 .

[27]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[28]  M. Lipson,et al.  Sub-nm resolution cavity enhanced microspectrometer. , 2010, Optics express.

[29]  Seiko Mitachi,et al.  Prediction of loss minima in infra-red optical fibres , 1981 .

[30]  S. Shopova,et al.  Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. , 2007, Optics express.

[31]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[32]  C C Davis,et al.  Phase fluctuation optical heterodyne spectroscopy of gases. , 1981, Applied optics.