Permanence of nonautonomous Lotka-Volterra delay differential systems

Abstract In this work, applying the results offered by S. Ahmad and A.C. Lazer [On a property of nonautonomous Lotka–Volterra competition model, Nonlinear Anal. 37 (1999) 603–611] and the recent work of R. Redheffer [Mean values and the nonautonomous May–Leonald equations, Nonlinear Anal. Real World Appl. 4 (2003) 301–306] to an nonautonomous Lotka–Volterra differential system with finite delays, we establish sufficient conditions for the permanence of the system.

[1]  Qingkai Kong,et al.  Eigenvalues of Regular Sturm-Liouville Problems , 1996 .

[2]  Alan C. Lazer,et al.  On a property of nonautonomous Lotka-Volterra competition model , 1999 .

[3]  Shair Ahmad,et al.  Necessary and sufficient average growth in a Lotka-Volterra system , 1998 .

[4]  K. Gopalsamy,et al.  Global asymptotic stability in a periodic Lotka-Volterra system , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[5]  K. Gopalsamy Global asymptotic stability in an almost-periodic Lotka-Volterra system , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[6]  Antonio Tineo,et al.  A, Different Consideraton about the Globally Asymptotically Stable Solution of the Periodic n-Competing Species Problem* , 1991 .

[7]  Yoshiaki Muroya,et al.  Boundedness and partial survival of species in nonautonomous Lotka-Volterra systems , 2005 .

[8]  R. Redheffer,et al.  Generalized monotonicity, integral conditions and partial survival , 2000, Journal of mathematical biology.

[9]  Alan C. Lazer,et al.  Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system , 2000 .

[10]  R. Redheffer Nonautonomous Lotka–Volterra Systems, II , 1996 .

[11]  R. Redheffer,et al.  Mean values and the nonautonomous May--Leonard equations , 2003 .

[12]  Y. Muroya Persistence and global stability in Lotka-Volterra delay differential systems , 2004, Appl. Math. Lett..