Genetic control of heart function and aging in Drosophila.

[1]  Karen Ocorr,et al.  KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging , 2007, Proceedings of the National Academy of Sciences.

[2]  M. Frasch,et al.  Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila , 2006, Development.

[3]  D. Srivastava Making or Breaking the Heart: From Lineage Determination to Morphogenesis , 2006, Cell.

[4]  L. Perrin,et al.  Control of Cardiac Rhythm by ORK1, a Drosophila Two-Pore Domain Potassium Channel , 2006, Current Biology.

[5]  Karen Ocorr,et al.  The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman , 2006, Proceedings of the National Academy of Sciences.

[6]  R. Bodmer,et al.  Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. , 2006, Cell metabolism.

[7]  M. Sanguinetti,et al.  hERG potassium channels and cardiac arrhythmia , 2006, Nature.

[8]  Joseph A Izatt,et al.  Drosophila as a model for the identification of genes causing adult human heart disease , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Ramaswami,et al.  Conditional mutations in SERCA, the Sarco-endoplasmic reticulum Ca2+-ATPase, alter heart rate and rhythmicity in Drosophila , 2006, Journal of Comparative Physiology B.

[10]  Laurent Perrin,et al.  Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart , 2005, Development.

[11]  I. Levitan,et al.  A Drosophila KCNQ Channel Essential for Early Embryonic Development , 2005, The Journal of Neuroscience.

[12]  H. Dowse,et al.  MUTATIONS IN AND DELETIONS OF THE Ca2+ CHANNEL-ENCODING GENE CACOPHONY, WHICH AFFECT COURTSHIP SONG IN DROSOPHILA, HAVE NOVEL EFFECTS ON HEARTBEATING , 2005, Journal of neurogenetics.

[13]  R. Bodmer,et al.  2.6 – Heart Development and Function , 2005 .

[14]  R. Bodmer,et al.  Insulin regulation of heart function in aging fruit flies , 2004, Nature Genetics.

[15]  R. Bodmer,et al.  Drosophila, an emerging model for cardiac disease. , 2004, Gene.

[16]  R. Ponzielli,et al.  Drosophila cardiac tube organogenesis requires multiple phases of Hox activity. , 2004, Developmental biology.

[17]  E. Hafen,et al.  Long-Lived Drosophila with Overexpressed dFOXO in Adult Fat Body , 2004, Science.

[18]  E. Olson A decade of discoveries in cardiac biology , 2004, Nature Medicine.

[19]  W. Giles,et al.  Nkx2-5 Pathways and Congenital Heart Disease Loss of Ventricular Myocyte Lineage Specification Leads to Progressive Cardiomyopathy and Complete Heart Block , 2004, Cell.

[20]  Yuan-Ping Pang,et al.  ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating , 2004, Nature Genetics.

[21]  L. Anderson,et al.  Older Adults' Views of “Successful Aging”—How Do They Compare with Researchers' Definitions? , 2004, Journal of the American Geriatrics Society.

[22]  Kostas Iatrou,et al.  comprehensive molecular insect science , 2004 .

[23]  M. Tatar,et al.  The Endocrine Regulation of Aging by Insulin-like Signals , 2003, Science.

[24]  Daniel Levy,et al.  Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. , 2003, Circulation.

[25]  M. Frasch,et al.  Early Signals in Cardiac Development , 2002, Circulation research.

[26]  E. Olson,et al.  Converging Pathways and Principles in Heart Development and Disease CV@CSH , 2002, Cell.

[27]  R. Cripps,et al.  Control of cardiac development by an evolutionarily conserved transcriptional network. , 2002, Developmental biology.

[28]  D. Elliott,et al.  Developmental paradigms in heart disease: insights from tinman , 2002, Annals of medicine.

[29]  J. Seidman,et al.  The coming of age of cardiovascular science. , 2002, Cold Spring Harbor symposia on quantitative biology.

[30]  J. Towbin Molecular genetic basis of sudden cardiac death. , 2001, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[31]  S. Izumo,et al.  Nkx2.5 and Nkx2.6, Homologs ofDrosophila tinman, Are Required for Development of the Pharynx , 2001, Molecular and Cellular Biology.

[32]  A. McCulloch,et al.  Age-Associated Cardiac Dysfunction in Drosophila melanogaster , 2001, Circulation research.

[33]  E. Lakatta,et al.  Heart Aging A Fly in the Ointment? , 2001 .

[34]  C. Kenyon A Conserved Regulatory System for Aging , 2001, Cell.

[35]  E. Hafen,et al.  Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein , 2001, Science.

[36]  M. Tatar,et al.  A Mutant Drosophila Insulin Receptor Homolog That Extends Life-Span and Impairs Neuroendocrine Function , 2001, Science.

[37]  T. Jentsch Neuronal KCNQ potassium channels:physislogy and role in disease , 2000, Nature Reviews Neuroscience.

[38]  G. Lyons,et al.  Expression of the Nkx3.1 homobox gene during pre and postnatal development , 1999, Mechanisms of Development.

[39]  H. Mizukami,et al.  Adeno-associated virus 2 co-receptors? , 1999, Nature Medicine.

[40]  M. Frasch,et al.  Genetic Determination of Drosophila Heart Development , 1999 .

[41]  S. Seino ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. , 1999, Annual review of physiology.

[42]  J. Seidman,et al.  Congenital heart disease caused by mutations in the transcription factor NKX2-5. , 1998, Science.

[43]  J. Rowe,et al.  Successful aging. , 1998, Aging.

[44]  N. Bray,et al.  Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. , 1998, Journal of neurogenetics.

[45]  R. Harvey NK-2 homeobox genes and heart development. , 1996, Developmental biology.

[46]  Ruili Li,et al.  Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. , 1995, Genes & development.

[47]  R. Bodmer,et al.  Heart development in Drosophila and its relationship to vertebrates. , 1995, Trends in cardiovascular medicine.

[48]  K. M. Dombek,et al.  ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1 , 1993, Molecular and cellular biology.

[49]  M. Frasch,et al.  tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. , 1993, Genes & development.

[50]  R. Bodmer The gene tinman is required for specification of the heart and visceral muscles in Drosophila. , 1993, Development.

[51]  Y. Jan,et al.  A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila. , 1990, Development.

[52]  R. Sidman,et al.  The murine mutation trembler-J: proof of semidominant expression by use of the linked vestigial tail marker. , 1983, Journal of neurogenetics.