Continuous-time random walks: simulation of continuous trajectories.
暂无分享,去创建一个
[1] Don S. Lemons,et al. An Introduction to Stochastic Processes in Physics , 2002 .
[2] A. Weron,et al. Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .
[3] G. Weiss. Aspects and Applications of the Random Walk , 1994 .
[4] R. Friedrich,et al. Joint probability distributions for a class of non-Markovian processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] A. Baule,et al. A fractional diffusion equation for two-point probability distributions of a continuous-time random walk , 2008, 0808.1194.
[6] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[7] Brian Berkowitz,et al. Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .
[8] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[9] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[10] Fogedby. Langevin equations for continuous time Lévy flights. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[11] P Hänggi,et al. Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] M. Shlesinger,et al. Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.
[13] I. Sokolov,et al. Multi-point distribution function for the continuous time random walk , 2007, 0705.2857.
[14] Mark M. Meerschaert,et al. Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.
[15] Francesco Mainardi,et al. Continuous-time random walk and parametric subordination in fractional diffusion , 2007 .
[16] L. Bachelier. Theorie de la Speculation, Doctor Thesis, Annales Scientifiques Ecole Normale Sperieure III -17 , 1900 .
[17] L. Bachelier,et al. Théorie de la spéculation , 1900 .
[18] R. Weron. Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.
[19] E. Montroll,et al. Random Walks on Lattices. II , 1965 .