Continuous-time random walks: simulation of continuous trajectories.

Continuous-time random walks have been developed as a straightforward generalization of classical random-walk processes. Some ten years ago, Fogedby introduced a continuous representation of these processes by means of a set of Langevin equations [H. C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. The present work is devoted to a detailed discussion of Fogedby's model and presents its application for the robust numerical generation of sample paths of continuous time random-walk processes.

[1]  Don S. Lemons,et al.  An Introduction to Stochastic Processes in Physics , 2002 .

[2]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[3]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[4]  R. Friedrich,et al.  Joint probability distributions for a class of non-Markovian processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Baule,et al.  A fractional diffusion equation for two-point probability distributions of a continuous-time random walk , 2008, 0808.1194.

[6]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[7]  Brian Berkowitz,et al.  Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .

[8]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[9]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[10]  Fogedby Langevin equations for continuous time Lévy flights. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  P Hänggi,et al.  Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  M. Shlesinger,et al.  Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.

[13]  I. Sokolov,et al.  Multi-point distribution function for the continuous time random walk , 2007, 0705.2857.

[14]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[15]  Francesco Mainardi,et al.  Continuous-time random walk and parametric subordination in fractional diffusion , 2007 .

[16]  L. Bachelier Theorie de la Speculation, Doctor Thesis, Annales Scientifiques Ecole Normale Sperieure III -17 , 1900 .

[17]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[18]  R. Weron Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.

[19]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .