Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries

Abstract In this study we report the effects of the Ni content on the electrochemical properties and the structural and thermal stabilities of Li[Ni x Co y Mn z ]O 2 ( x  = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) synthesized via a coprecipitation method. The electrochemical and thermal properties of Li[Ni x Co y Mn z ]O 2 are strongly dependent on its composition. An increase of the Ni content results in an increase of specific discharge capacity and total residual lithium content but the corresponding capacity retention and safety characteristics gradually decreased. The structural stability is related to the thermal and electrochemical stabilities, as confirmed by X-ray diffraction, thermal gravimetric analysis, and differential scanning calorimetry. Developing an ideal cathode material with both high capacity and safety will be a challenging task that requires precise control of microstructure and physico-chemical properties of the electrode.

[1]  C. Yoon,et al.  Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials , 2011 .

[2]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[3]  K. Amine,et al.  Formation of a Continuous Solid‐Solution Particle and its Application to Rechargeable Lithium Batteries , 2013 .

[4]  Takako Kobayashi,et al.  Characterization of Li1+yNixCo1−2xMnxO2 positive active materials for lithium ion batteries , 2005 .

[5]  H. Park,et al.  Effects of LiPON Thin-Film Coating on Thermal Behavior of Delithiated Li1 − x ( Ni0.53Co0.2Mn0.27 ) O2 Cathode , 2010 .

[6]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[7]  Lijun Wu,et al.  Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries , 2011 .

[8]  B. V. R. Chowdari,et al.  Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2 , 2004 .

[9]  G. Rao,et al.  Li-ion kinetics and polarization effect on the electrochemical performance of Li(Ni1/2Mn1/2)O2 , 2004 .

[10]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[11]  C. Delmas,et al.  Thermal Stability of Lithium Nickel Oxide Derivatives. Part II: LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2 , 2003 .

[12]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[13]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[14]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[15]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[16]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[17]  K. Amine,et al.  Significant Improvement of Electrochemical Performance of AlF3-Coated Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials , 2007 .

[18]  J. Selman,et al.  Relationship Between Calorimetric and Structural Characteristics of Lithium‐Ion Cells II. Determination of Li Transport Properties , 2000 .

[19]  Jaephil Cho,et al.  Water Adsorption and Storage Characteristics of Optimized LiCoO2 and LiNi1 ∕ 3Co1 ∕ 3Mn1 ∕ 3O2 Composite Cathode Material for Li-Ion Cells , 2006 .

[20]  Ilias Belharouak,et al.  Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 , 2006 .

[21]  K. Amine,et al.  Synthesis and characterization of spherical morphology [Ni0.4Co0.2Mn0.4]3O4 materials for lithium secondary batteries , 2006 .

[22]  Yang‐Kook Sun,et al.  Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation , 2006 .

[23]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[24]  M. Yoshikawa,et al.  Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-Ion batteries , 2011 .

[25]  N. Dudney,et al.  Lithium Diffusion in LixCoO2 (0.45 < x < 0.7) Intercalation Cathodes , 2001 .

[26]  Atsushi Yamanaka,et al.  Effects of CO2 in air on Li deintercalation from LiNi1−x−yCoxAlyO2 , 1999 .

[27]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[28]  Xiangming He,et al.  Synthesis and characterization of LiNi0.6Mn0.4―xCoxO2 as cathode materials for Li-ion batteries , 2009 .

[29]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[30]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[31]  Min Gyu Kim,et al.  Storage Characteristics of LiNi0.8Co0.1 + x Mn0.1 − x O2 (x = 0 , 0.03, and 0.06) Cathode Materials for Lithium Batteries , 2008 .

[32]  Yang‐Kook Sun,et al.  Synthetic optimization of Li[Ni 1/3Co 1/3Mn 1/3]O 2 via co-precipitation , 2004 .

[33]  Richard T. Haasch,et al.  Surface Characterization of Electrodes from High Power Lithium-Ion Batteries , 2002 .

[34]  G. Rao,et al.  Li ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O4(M = Mn, Co, CoAl) by GITT and EIS , 2003 .

[35]  Peter Y. Zavalij,et al.  The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound , 2004 .