Bacterial growth laws and their applications.

[1]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[2]  Alan T. Bull,et al.  The renaissance of continuous culture in the post-genomics age , 2010, Journal of Industrial Microbiology & Biotechnology.

[3]  Tom M. Conrad,et al.  Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models , 2010, Molecular systems biology.

[4]  N. Shoresh,et al.  Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence , 2010, Proceedings of the National Academy of Sciences.

[5]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[6]  Thomas Bley,et al.  Origin and analysis of microbial population heterogeneity in bioprocesses. , 2010, Current opinion in biotechnology.

[7]  R. Kwok Five hard truths for synthetic biology , 2010, Nature.

[8]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[9]  Naama Barkai,et al.  Coordination of gene expression with growth rate: A feedback or a feed‐forward strategy? , 2009, FEBS letters.

[10]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[11]  R. Kishony,et al.  Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions , 2009, Cell.

[12]  Alexander van Oudenaarden,et al.  Growth Landscape Formed by Perception and Import of Glucose in Yeast , 2009, Nature.

[13]  B. Teusink,et al.  Shifts in growth strategies reflect tradeoffs in cellular economics , 2009, Molecular systems biology.

[14]  Jue D. Wang,et al.  Metabolism, cell growth and the bacterial cell cycle , 2009, Nature Reviews Microbiology.

[15]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[16]  Uri Alon,et al.  Invariant Distribution of Promoter Activities in Escherichia coli , 2009, PLoS Comput. Biol..

[17]  A. Narang Quantitative effect and regulatory function of cyclic adenosine 5′-phosphate in Escherichia coli , 2009, Journal of Biosciences.

[18]  Terence Hwa,et al.  Evolutionary selection between alternative modes of gene regulation , 2009, Proceedings of the National Academy of Sciences.

[19]  Kaustubh D Bhalerao,et al.  Synthetic gene networks: the next wave in biotechnology? , 2009, Trends in biotechnology.

[20]  Alfonso Jaramillo,et al.  Modular model-based design for heterologous bioproduction in bacteria. , 2009, Current opinion in biotechnology.

[21]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[22]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.

[23]  D. Botstein,et al.  The cost of gene expression underlies a fitness trade-off in yeast , 2009, Proceedings of the National Academy of Sciences.

[24]  Robert H. Davis,et al.  Plasmid-encoded protein: the principal factor in the "metabolic burden" associated with recombinant bacteria. Biotechnology Bioengineering, 1990. , 2009, Biotechnology and bioengineering.

[25]  Edoardo M. Airoldi,et al.  Predicting Cellular Growth from Gene Expression Signatures , 2009, PLoS Comput. Biol..

[26]  Jay D Keasling,et al.  Developing Aspergillus as a host for heterologous expression. , 2009, Biotechnology advances.

[27]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[28]  Chunbo Lou,et al.  A molecular model for persister in E. coli. , 2008, Journal of theoretical biology.

[29]  Julian N. Rosenberg,et al.  A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. , 2008, Current opinion in biotechnology.

[30]  Wolf-Dietrich Hardt,et al.  Self-destructive cooperation mediated by phenotypic noise , 2008, Nature.

[31]  D. Endy,et al.  Refinement and standardization of synthetic biological parts and devices , 2008, Nature Biotechnology.

[32]  Tsvi Tlusty,et al.  A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number , 2008, PLoS Comput. Biol..

[33]  Daniel M. Stoebel,et al.  The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products , 2008, Genetics.

[34]  A. Narang,et al.  Bistability of the lac Operon During Growth of Escherichia coli on Lactose and Lactose + Glucose , 2007, Bulletin of mathematical biology.

[35]  F. Blattner,et al.  Recombinant protein production in an Escherichia coli reduced genome strain. , 2007, Metabolic engineering.

[36]  Jürgen Pleiss,et al.  The promise of synthetic biology , 2006, Applied Microbiology and Biotechnology.

[37]  A. Arkin,et al.  Fast, cheap and somewhat in control , 2006, Genome Biology.

[38]  Ron Weiss,et al.  Engineering life: building a fab for biology. , 2006, Scientific American.

[39]  T. Hill,et al.  Ectopic Overexpression of Wild-Type and Mutant hipA Genes in Escherichia coli: Effects on Macromolecular Synthesis and Persister Formation , 2006, Journal of bacteriology.

[40]  Nicholas J. Guido,et al.  A bottom-up approach to gene regulation , 2006, Nature.

[41]  U. Alon,et al.  Optimality and evolutionary tuning of the expression level of a protein , 2005, Nature.

[42]  M. Springer,et al.  Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation inEscherichia coli , 1996, Molecular and General Genetics MGG.

[43]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[44]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[45]  P. Pandolfi,et al.  Does the ribosome translate cancer? , 2003, Nature Reviews Cancer.

[46]  Frederick C. Neidhardt,et al.  Bacterial Growth: Constant Obsession withdN/dt , 1999, Journal of bacteriology.

[47]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[48]  M A Savageau,et al.  Demand theory of gene regulation. I. Quantitative development of the theory. , 1998, Genetics.

[49]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[50]  C. Kurland,et al.  Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction , 1995, Journal of bacteriology.

[51]  B. Glick Metabolic load and heterologous gene expression. , 1995, Biotechnology advances.

[52]  S. Cooper The origins and meaning of the Schaechter-Maaløe-Kjeldgaard experiments , 1993 .

[53]  H. Bremer,et al.  Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. , 1993, The Journal of biological chemistry.

[54]  R. Buckholz,et al.  Yeast Systems for the Commercial Production of Heterologous Proteins , 1991, Bio/Technology.

[55]  W. Bentley,et al.  Plasmid‐encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria , 1990, Biotechnology and bioengineering.

[56]  A. L. Koch,et al.  Why can't a cell grow infinitely fast? , 1988, Canadian journal of microbiology.

[57]  J R Cole,et al.  Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2. , 1987, Journal of molecular biology.

[58]  M A Savageau,et al.  Integrated function of a kinetic proofreading mechanism: dynamic analysis separating the effects of speed and substrate competition on accuracy. , 1984, Biochemistry.

[59]  M. Ehrenberg,et al.  Costs of accuracy determined by a maximal growth rate constraint , 1984, Quarterly Reviews of Biophysics.

[60]  Keith R. Yamamoto,et al.  Biological Regulation and Development , 1982, Springer US.

[61]  R. Harvey,et al.  How partially inhibitory concentrations of chloramphenicol affect the growth of Escherichia coli , 1980, Antimicrobial Agents and Chemotherapy.

[62]  O. Maaløe,et al.  Regulation of the Protein-Synthesizing Machinery—Ribosomes, tRNA, Factors, and So On , 1979 .

[63]  O. Maaløe,et al.  The effects of fusidic acid on growth, ribosome synthesis and RNA metabolism in Escherichia coli. , 1974, Journal of molecular biology.

[64]  W. Donachie,et al.  Relationship between Cell Size and Time of Initiation of DNA Replication , 1968, Nature.

[65]  C. Helmstetter,et al.  DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. , 1968, Journal of molecular biology.

[66]  F. Neidhardt,et al.  Studies on the role of ribonucleic acid in the growth of bacteria. , 1960, Biochimica et biophysica acta.

[67]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[68]  C. Hinshelwood,et al.  136. On the chemical kinetics of autosynthetic systems , 1952 .

[69]  J. Monod The Growth of Bacterial Cultures , 1949 .