Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (∼20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion.

[1]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[2]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[3]  Lucio Claudio Andreani,et al.  Radiative lifetime of free excitons in quantum wells , 1991 .

[4]  D. Citrin Homogeneous-linewidth effects on radiative lifetimes of excitons in quantum wells , 1992 .

[5]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[6]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[7]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Phaedon Avouris,et al.  Radiative lifetime of excitons in carbon nanotubes. , 2005, Nano letters.

[9]  Sohrab Ismail-Beigi,et al.  Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. , 2005, Physical review letters.

[10]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[14]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[15]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[16]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[17]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[18]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[19]  Angel Rubio,et al.  Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system , 2012, Nature Communications.

[20]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[21]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[22]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[23]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[24]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[25]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[26]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[27]  T. Yu,et al.  Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. , 2013, ACS nano.

[28]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[29]  Stefan A Maier,et al.  Two-dimensional crystals: managing light for optoelectronics. , 2013, ACS nano.

[30]  J. He,et al.  Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy , 2013, 1303.0749.

[31]  Hyunyong Choi,et al.  Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics , 2013 .

[32]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[33]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[34]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[35]  P. Tan,et al.  Carrier and polarization dynamics in monolayer MoS2. , 2013, Physical review letters.

[36]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[37]  Hui Zhao,et al.  Transient absorption microscopy of monolayer and bulk WSe2. , 2014, ACS nano.

[38]  G. Cerullo,et al.  Coherent ultrafast charge transfer in an organic photovoltaic blend , 2014, Science.

[39]  S. Louie,et al.  ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. , 2014, Physical review letters.

[40]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[41]  G. Eda,et al.  Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation , 2014, 1405.5781.

[42]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[43]  D. He,et al.  Exciton-exciton annihilation in MoSe2 monolayers , 2013, 1311.1079.

[44]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[45]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.