DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware

To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).

[1]  Mohammad Shojafar,et al.  FR trust: a fuzzy reputation-based model for trust management in semantic P2P grids , 2014, Int. J. Grid Util. Comput..

[2]  James Kennedy,et al.  The Behavior of Particles , 1998, Evolutionary Programming.

[3]  Okyay Kaynak,et al.  Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles , 2007, Expert Syst. Appl..

[4]  Dalibor Petkovic,et al.  Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability , 2011, Neural Computing and Applications.

[5]  Babak Rezaee,et al.  Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers , 2009, Expert Syst. Appl..

[6]  Gabriel Maciá-Fernández,et al.  Anomaly-based network intrusion detection: Techniques, systems and challenges , 2009, Comput. Secur..

[7]  Chia-Feng Juang Combination of Particle Swarm and Ant Colony Optimization Algorithms for Fuzzy Systems Design , 2010 .

[8]  Wen Yu,et al.  Fuzzy identification using fuzzy neural networks with stable learning algorithms , 2004 .

[9]  Mojtaba Ahmadieh Khanesar,et al.  Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods , 2009, Appl. Soft Comput..

[10]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[11]  Kim-Kwang Raymond Choo,et al.  An adversary model to evaluate DRM protection of video contents on iOS devices , 2016, Comput. Secur..

[12]  Kim-Kwang Raymond Choo,et al.  A Forensically Sound Adversary Model for Mobile Devices , 2015, PloS one.

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  Z.A. Bashir,et al.  Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks , 2009, IEEE Transactions on Power Systems.

[15]  Ali Feizollah,et al.  A Study Of Machine Learning Classifiers for Anomaly-Based Mobile Botnet Detection , 2013 .

[16]  Vinod Yegneswaran,et al.  Eureka: A Framework for Enabling Static Malware Analysis , 2008, ESORICS.

[17]  Simin Nadjm-Tehrani,et al.  Crowdroid: behavior-based malware detection system for Android , 2011, SPSM '11.

[18]  D WahidaBanu.R.S.,et al.  Identification and Control of Nonlinear Systems using Soft Computing Techniques , 2011 .

[19]  Sakir Sezer,et al.  Analysis of Bayesian classification-based approaches for Android malware detection , 2016, IET Inf. Secur..

[20]  Andrew Lam,et al.  Analysis of Android Applications , 2016 .

[21]  Pascal Bouvry,et al.  Particle swarm optimization: Hybridization perspectives and experimental illustrations , 2011, Appl. Math. Comput..

[22]  Sven P. Jacobsson,et al.  Algorithmic approaches for studies of variable influence, contribution and selection in neural networks , 2000 .

[23]  Kim-Kwang Raymond Choo,et al.  Android mobile VoIP apps: a survey and examination of their security and privacy , 2016, Electron. Commer. Res..

[24]  Kim-Kwang Raymond Choo,et al.  A Review of Free Cloud-Based Anti-Malware Apps for Android , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[25]  Peter Szor,et al.  The Art of Computer Virus Research and Defense , 2005 .

[26]  Maria Papadaki,et al.  Evaluation of anomaly-based IDS for mobile devices using machine learning classifiers , 2012, Secur. Commun. Networks.

[27]  Yajin Zhou,et al.  Dissecting Android Malware: Characterization and Evolution , 2012, 2012 IEEE Symposium on Security and Privacy.

[28]  Kim-Kwang Raymond Choo,et al.  A Generic Process to Identify Vulnerabilities and Design Weaknesses in iOS Healthcare Apps , 2015, 2015 48th Hawaii International Conference on System Sciences.

[29]  Giovanna Castellano,et al.  Variable selection using neural-network models , 2000, Neurocomputing.

[30]  Shahaboddin Shamshirband,et al.  Hybrid ANFIS-PSO approach for predicting optimum parameters of a protective spur dike , 2015, Appl. Soft Comput..

[31]  Mirna Issa,et al.  Adaptive neuro fuzzy controller for adaptive compliant robotic gripper , 2012, Expert Syst. Appl..

[32]  Phurivit Sangkatsanee,et al.  Practical real-time intrusion detection using machine learning approaches , 2011, Comput. Commun..

[33]  Nor Badrul Anuar,et al.  Intrusion response systems: Foundations, design, and challenges , 2016, J. Netw. Comput. Appl..

[34]  R. H. Fouad,et al.  ELECTRICITY CONSUMPTION IN THE INDUSTRIAL SECTOR OF JORDAN: APPLICATION OF MULTIVARIATE LINEAR REGRESSION AND ADAPTIVE NEURO‐FUZZY TECHNIQUES , 2009 .

[35]  M. Sudha,et al.  Design of intelligent self-tuning GA ANFIS temperature controller for plastic extrusion system , 2011 .

[36]  Nicola Cordeschi,et al.  FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method , 2014, Cluster Computing.

[37]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[38]  R. Sivakumar,et al.  ANFIS based Distillation Column Control , 2010 .

[39]  Kim-Kwang Raymond Choo,et al.  The cyber threat landscape: Challenges and future research directions , 2011, Comput. Secur..

[40]  David P. Wilson,et al.  Estimating the Cost-Effectiveness of HIV Prevention Programmes in Vietnam, 2006-2010: A Modelling Study , 2015, PloS one.

[41]  Donald Sofge Using Genetic Algorithm Based Variable Selection to Improve Neural Network Models for Real-World Systems , 2002, ICMLA.

[42]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[43]  Kim-Kwang Raymond Choo,et al.  Privacy Risks in Mobile Dating Apps , 2015, AMCIS.

[44]  Kim-Kwang Raymond Choo,et al.  Exfiltrating data from Android devices , 2015, Comput. Secur..

[45]  Kit Yan Chan,et al.  A methodology of generating customer satisfaction models for new product development using a neuro-fuzzy approach , 2009, Expert Syst. Appl..

[46]  Karen A. Scarfone,et al.  Guide to Intrusion Detection and Prevention Systems (IDPS) , 2007 .

[47]  Ali Dehghantanha,et al.  M0Droid: An Android Behavioral-Based Malware Detection Model , 2015 .

[48]  Xiaoou Li,et al.  Fuzzy identification using fuzzy neural networks with stable learning algorithms , 2004, IEEE Transactions on Fuzzy Systems.

[49]  V M F Mendes,et al.  Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Electricity Prices Forecasting , 2011, IEEE Transactions on Power Systems.

[50]  H. Metin Ertunç,et al.  An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower , 2011, Expert Syst. Appl..

[51]  Nor Badrul Anuar,et al.  A Single Journal Study : Malaysian Journal of Computer Science , 2009, ArXiv.

[52]  Chun-Ying Huang,et al.  Performance Evaluation on Permission-Based Detection for Android Malware , 2013 .

[53]  Andrew W. H. Ip,et al.  Modeling customer satisfaction for new product development using a PSO-based ANFIS approach , 2012, Appl. Soft Comput..

[54]  Christopher Krügel,et al.  A survey on automated dynamic malware-analysis techniques and tools , 2012, CSUR.

[55]  Amira Y. Haikal,et al.  Adaptive neuro-fuzzy control of an induction motor , 2010 .

[56]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[57]  Shahriar Negahdaripour,et al.  Controller design for an autonomous underwater vehicle using nonlinear observers , 2011 .

[58]  Nemat Changizi,et al.  Control DC Motorspeed with Adaptive Neuro-Fuzzy control (ANFIS) , 2011 .

[59]  Hung T. Nguyen,et al.  Diagnosis of hypoglycemic episodes using a neural network based rule discovery system , 2011, Expert Syst. Appl..

[60]  Mirna Issa,et al.  Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties , 2012, Expert Syst. Appl..

[61]  T. N. Singh,et al.  Estimation of elastic constant of rocks using an ANFIS approach , 2012, Appl. Soft Comput..

[62]  Wahida Banu,et al.  Identification and Control of Nonlinear Systems using Soft Computing Techniques , 2011 .

[63]  Nor Badrul Anuar,et al.  The rise of "malware": Bibliometric analysis of malware study , 2016, J. Netw. Comput. Appl..

[64]  Xiaohui Yuan,et al.  Application of enhanced PSO approach to optimal scheduling of hydro system , 2008 .

[65]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[66]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[67]  Günter Gauglitz,et al.  Growing neural networks for a multivariate calibration and variable selection of time-resolved measurements , 2003 .

[68]  Jemal H. Abawajy,et al.  An efficient meta-heuristic algorithm for grid computing , 2013, Journal of Combinatorial Optimization.