Definability in the Infix Order on Words

We develop a theory of (first-order) definability in the infix partial order on words in parallel with a similar theory for the h-quasiorder of finite k-labeled forests. In particular, any element is definable (provided that words of length 1 or 2 are taken as parameters), the first-order theory of the structure is atomic and computably isomorphic to the first-order arithmetic. We also characterize the automorphism group of the structure and show that any arithmetical predicate invariant under the automorphisms of the structure is definable in the structure.

[1]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[2]  A. Myasnikov,et al.  Elementary theory of free non-abelian groups , 2006 .

[3]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[4]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[5]  Victor L. Selivanov,et al.  Definability in the h-quasiorder of labeled forests , 2009, Ann. Pure Appl. Log..

[6]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[7]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[8]  I︠U︡riĭ Leonidovich Ershov Definability and Computability , 1996 .

[9]  Victor L. Selivanov,et al.  Hierarchies of Δ02‐measurable k ‐partitions , 2007, Math. Log. Q..

[10]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[11]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[12]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[13]  Dietrich Kuske,et al.  Theories of orders on the set of words , 2006, RAIRO Theor. Informatics Appl..

[14]  Victor L. Selivanov,et al.  Undecidability in the Homomorphic Quasiorder of Finite Labelled Forests , 2007, J. Log. Comput..

[15]  Victor L. Selivanov,et al.  Undecidability in the Homomorphic Quasiorder of Finite Labeled Forests , 2006, CiE.

[16]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[17]  Victor L. Selivanov,et al.  A Gandy Theorem for Abstract Structures and Applications to First-Order Definability , 2009, CiE.

[18]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .