Hybrid peptides: direct transformation of α/α, β-unsaturated γ-hybrid peptides to α/γ-hybrid peptide 12-helices.

A smooth transformation of unusual planar structures of α/vinylogous hybrid peptides to ordered α/γ(4)-hybrid peptide 12-helices and the stereochemical preferences of vinylogous amino acid residues in single crystals are studied.

[1]  A. Bandyopadhyay,et al.  Synthesis of α, β-unsaturated γ-amino esters with unprecedented high (E)-stereoselectivity and their conformational analysis in peptides. , 2011, Organic & biomolecular chemistry.

[2]  A. Bandyopadhyay,et al.  Synthesis and structural investigations of functionalizable hybrid β-hairpin. , 2011, Organic letters.

[3]  Lara C. Spencer,et al.  Characteristic structural parameters for the γ-peptide 14-helix: importance of subunit preorganization. , 2011, Angewandte Chemie.

[4]  C. Kouklovsky,et al.  Foldamers containing γ-amino acid residues or their analogues: structural features and applications , 2011, Amino Acids.

[5]  P. Balaram,et al.  Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. , 2011, Chemical reviews.

[6]  S. Gellman,et al.  Structural consequences of beta-amino acid preorganization in a self-assembling alpha/beta-peptide: fundamental studies of foldameric helix bundles. , 2010, Journal of the American Chemical Society.

[7]  S. Gellman,et al.  Helix formation in preorganized beta/gamma-peptide foldamers: hydrogen-bond analogy to the alpha-helix without alpha-amino acid residues. , 2010, Journal of the American Chemical Society.

[8]  S. Gellman,et al.  Stereospecific synthesis of conformationally constrained gamma-amino acids: new foldamer building blocks that support helical secondary structure. , 2009, Journal of the American Chemical Society.

[9]  P. Balaram,et al.  Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design. , 2009, Accounts of chemical research.

[10]  C. Ramakrishnan,et al.  Expanding the peptide beta-turn in alphagamma hybrid sequences: 12 atom hydrogen bonded helical and hairpin turns. , 2009, Journal of the American Chemical Society.

[11]  Roger G. Linington,et al.  Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. , 2009, Journal of natural products.

[12]  W Seth Horne,et al.  Foldamers with heterogeneous backbones. , 2008, Accounts of chemical research.

[13]  James Gardiner,et al.  Beta-peptidic peptidomimetics. , 2008, Accounts of chemical research.

[14]  K. Ramakrishna,et al.  12/10- and 11/13-Mixed Helices in α/γ- and β/γ-Hybrid Peptides Containing C-Linked Carbo-γ-amino Acids with Alternating α- and β-Amino Acids , 2006 .

[15]  C. Baldauf,et al.  Helix formation in α,γ- and β,γ-hybrid peptides : Theoretical insights into mimicry of α- and β-peptides , 2006 .

[16]  C. Didierjean,et al.  Structural investigation of "cis" and "trans" vinylogous peptides: cis-vinylog turn in folded cis-vinylogous peptides, an excellent mimic of the natural beta-turn. , 2005, The Journal of organic chemistry.

[17]  K. Ramakrishna,et al.  9/11 mixed helices in alpha/beta peptides derived from C-linked carbo-beta-amino acid and L-Ala repeats. , 2005, Angewandte Chemie.

[18]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[19]  C. Baldauf,et al.  Control of helix formation in vinylogous gamma-peptides by (E)- and (Z)-double bonds: a way to ion channels and monomolecular nanotubes. , 2005, The Journal of organic chemistry.

[20]  D. Seebach,et al.  The World of β‐ and γ‐Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components , 2004 .

[21]  Dan‐Wei Zhang,et al.  Effect of side chains on turns and helices in peptides of beta3-aminoxy acids. , 2004, Journal of the American Chemical Society.

[22]  T. Chakraborty,et al.  Nucleation of beta-hairpin structures with cis amide bonds in E-vinylogous proline-containing peptides. , 2003, Journal of Organic Chemistry.

[23]  C. Baldauf,et al.  Helix formation and folding in γ-peptides and their vinylogues , 2003 .

[24]  Jin-seong Park,et al.  Accommodation of α-Substituted Residues in the β-Peptide 12-Helix: Expanding the Range of Substitution Patterns Available to a Foldamer Scaffold , 2003 .

[25]  S. Gellman,et al.  Synthesis and 12-helical secondary structure of beta-peptides containing (2R,3R)-aminoproline. , 2002, Organic letters.

[26]  Dan Yang,et al.  beta(2,2)-Aminoxy acids: a new building block for turns and helices. , 2002, Journal of the American Chemical Society.

[27]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[28]  B. Jaun,et al.  Preparation and determination of X-ray-crystal and NMR-solution structures of γ2,3,4-peptides , 2001 .

[29]  S. Michnick,et al.  Design of Secondary Structures in Unnatural Peptides: Stable Helical γ-Tetra-, Hexa-, and Octapeptides and Consequences of α-Substitution , 1998 .

[30]  R. Andersen,et al.  Cytotoxic peptides from the marine sponge Cymbastela sp. , 1995 .

[31]  S. Schreiber,et al.  Vinylogous polypeptides: an alternative peptide backbone , 1992 .

[32]  C. Toniolo,et al.  The polypeptide 310-helix. , 1991, Trends in biochemical sciences.

[33]  I. Karle,et al.  Structural characteristics of alpha-helical peptide molecules containing Aib residues. , 1990, Biochemistry.