Analysis of Tensor Approximation Schemes for Continuous Functions
暂无分享,去创建一个
[1] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[2] Antonio Falcó,et al. Tree-based tensor formats , 2018, SeMA Journal.
[3] M. Griebel,et al. Singular value decomposition versus sparse grids: refined complexity estimates , 2018, IMA Journal of Numerical Analysis.
[4] Michael Peters,et al. Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.
[5] Michael Griebel,et al. Multiscale simulation of polymeric fluids using the sparse grid combination technique , 2018, Appl. Math. Comput..
[6] Ivan Oseledets,et al. Expressive power of recurrent neural networks , 2017, ICLR.
[7] H. Harbrecht,et al. Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion , 2017, Stochastics and Partial Differential Equations: Analysis and Computations.
[8] Helmut Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[9] H. Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[10] A. Shashua,et al. On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT.
[11] RWTH Aachen,et al. Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in $L_2$ , 2014, 1412.3951.
[12] Youssef M. Marzouk,et al. Spectral Tensor-Train Decomposition , 2014, SIAM J. Sci. Comput..
[13] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[14] Wolfgang Dahmen,et al. Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.
[15] Christoph Schwab,et al. First order k-th moment finite element analysis of nonlinear operator equations with stochastic data , 2013, Math. Comput..
[16] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[17] M. Griebel,et al. A Note on the Construction of L-Fold Sparse Tensor Product Spaces , 2013, Constructive Approximation.
[18] Michael Griebel,et al. On the construction of sparse tensor product spaces , 2012, Math. Comput..
[19] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[20] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[21] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[22] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[23] Doina Cioranescu,et al. The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..
[24] Reinhold Schneider,et al. Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.
[25] Olaf Steinbach,et al. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .
[26] F. Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[27] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[28] Christoph Schwab,et al. Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.
[29] Christoph Schwab,et al. Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.
[30] C. Schwab,et al. High Dimensional Finite Elements for Elliptic Problems with Multiple Scales and Stochastic Data , 2003, math/0305007.
[31] Ana-Maria Matache,et al. Sparse Two-Scale FEM for Homogenization Problems , 2002, J. Sci. Comput..
[32] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[33] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[34] G. W. Stewart,et al. On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..
[35] Jaromír Šimša,et al. The bestL2-approximation by finite sums of functions with separable variables , 1992 .
[36] M. Loève. Probability Theory II , 1978 .
[37] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[38] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[39] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[40] Michael Griebel,et al. Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .
[41] Timothy Nigel Phillips,et al. The Langevin and Fokker-Planck equations in polymer rheology , 2011 .
[42] Claude Le Bris,et al. Multiscale Modelling of Complex Fluids: A Mathematical Initiation , 2009 .
[43] John W. Barrett,et al. KINETIC MODELS OF DILUTE POLYMERS: ANALYSIS, APPROXIMATION AND COMPUTATION , 2009 .
[44] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[45] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[46] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[47] F. Smithies. The Eigen‐Values and Singular Values of Integral Equations† , 1938 .
[48] L. Grasedyck. f¨ur Mathematik in den Naturwissenschaften Leipzig Hierarchical Singular Value Decomposition of Tensors , 2022 .
[49] G. W. STEWARTt. ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .
[50] W. Hackbusch,et al. On Minimal Subspaces in Tensor Representations , 2012, Foundations of Computational Mathematics.