Analysis of Tensor Approximation Schemes for Continuous Functions

[1]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[2]  Antonio Falcó,et al.  Tree-based tensor formats , 2018, SeMA Journal.

[3]  M. Griebel,et al.  Singular value decomposition versus sparse grids: refined complexity estimates , 2018, IMA Journal of Numerical Analysis.

[4]  Michael Peters,et al.  Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion , 2018, SIAM/ASA J. Uncertain. Quantification.

[5]  Michael Griebel,et al.  Multiscale simulation of polymeric fluids using the sparse grid combination technique , 2018, Appl. Math. Comput..

[6]  Ivan Oseledets,et al.  Expressive power of recurrent neural networks , 2017, ICLR.

[7]  H. Harbrecht,et al.  Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion , 2017, Stochastics and Partial Differential Equations: Analysis and Computations.

[8]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[9]  H. Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[10]  A. Shashua,et al.  On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT.

[11]  RWTH Aachen,et al.  Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in $L_2$ , 2014, 1412.3951.

[12]  Youssef M. Marzouk,et al.  Spectral Tensor-Train Decomposition , 2014, SIAM J. Sci. Comput..

[13]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[14]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[15]  Christoph Schwab,et al.  First order k-th moment finite element analysis of nonlinear operator equations with stochastic data , 2013, Math. Comput..

[16]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[17]  M. Griebel,et al.  A Note on the Construction of L-Fold Sparse Tensor Product Spaces , 2013, Constructive Approximation.

[18]  Michael Griebel,et al.  On the construction of sparse tensor product spaces , 2012, Math. Comput..

[19]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[20]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[21]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[22]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[23]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[24]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[25]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[26]  F. Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[27]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[28]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[29]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[30]  C. Schwab,et al.  High Dimensional Finite Elements for Elliptic Problems with Multiple Scales and Stochastic Data , 2003, math/0305007.

[31]  Ana-Maria Matache,et al.  Sparse Two-Scale FEM for Homogenization Problems , 2002, J. Sci. Comput..

[32]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[33]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[34]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[35]  Jaromír Šimša,et al.  The bestL2-approximation by finite sums of functions with separable variables , 1992 .

[36]  M. Loève Probability Theory II , 1978 .

[37]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[38]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[39]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[40]  Michael Griebel,et al.  Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .

[41]  Timothy Nigel Phillips,et al.  The Langevin and Fokker-Planck equations in polymer rheology , 2011 .

[42]  Claude Le Bris,et al.  Multiscale Modelling of Complex Fluids: A Mathematical Initiation , 2009 .

[43]  John W. Barrett,et al.  KINETIC MODELS OF DILUTE POLYMERS: ANALYSIS, APPROXIMATION AND COMPUTATION , 2009 .

[44]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[45]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[46]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[47]  F. Smithies The Eigen‐Values and Singular Values of Integral Equations† , 1938 .

[48]  L. Grasedyck f¨ur Mathematik in den Naturwissenschaften Leipzig Hierarchical Singular Value Decomposition of Tensors , 2022 .

[49]  G. W. STEWARTt ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .

[50]  W. Hackbusch,et al.  On Minimal Subspaces in Tensor Representations , 2012, Foundations of Computational Mathematics.