Bayesian Estimation of Turbulent Motion

Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non--Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.

[1]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[2]  Nicolas Papadakis,et al.  Variational Assimilation of Fluid Motion from Image Sequence , 2008, SIAM J. Imaging Sci..

[3]  Jing Yuan,et al.  Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Journal of Mathematical Imaging and Vision.

[4]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[5]  Étienne Mémin,et al.  Divergence-Free Wavelets and High Order Regularization , 2013, International Journal of Computer Vision.

[6]  Philippe Lavoie,et al.  Effects of initial conditions in decaying turbulence generated by passive grids , 2007, Journal of Fluid Mechanics.

[7]  Étienne Mémin,et al.  Bayesian Inference of Models and Hyperparameters for Robust Optical-Flow Estimation , 2012, IEEE Transactions on Image Processing.

[8]  Christoph Schnörr,et al.  Variational fluid flow measurements from image sequences: synopsis and perspectives , 2010 .

[9]  Tianshu Liu,et al.  Fluid flow and optical flow , 2008, Journal of Fluid Mechanics.

[10]  Étienne Mémin,et al.  Wavelet-Based Fluid Motion Estimation , 2011, SSVM.

[11]  C. Schnörr,et al.  Optical Stokes Flow Estimation: An Imaging‐Based Control Approach , 2006 .

[12]  C. Schnörr,et al.  Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization , 2007 .

[13]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[14]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[15]  E. T. Jaynes,et al.  BAYESIAN METHODS: GENERAL BACKGROUND ? An Introductory Tutorial , 1986 .

[16]  Nicolas Papadakis,et al.  Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[18]  John Y. N. Cho,et al.  Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 2. Theoretical considerations , 2001 .

[19]  Jérôme Idier,et al.  Convex half-quadratic criteria and interacting auxiliary variables for image restoration , 2001, IEEE Trans. Image Process..

[20]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  Aggelos K. Katsaggelos,et al.  Bayesian and regularization methods for hyperparameter estimation in image restoration , 1999, IEEE Trans. Image Process..

[22]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  C. Schnörr,et al.  Optical Stokes flow estimation: an imaging-based control approach , 2006 .

[24]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[25]  P. D. Mininni,et al.  Direct Simulations of Helical Hall-MHD Turbulence and Dynamo Action , 2004, astro-ph/0410274.

[26]  Étienne Mémin,et al.  Bayesian selection of scaling laws for motion modeling in images , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Rudolf Mester,et al.  Bayesian Model Selection for Optical Flow Estimation , 2007, DAGM-Symposium.

[28]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[30]  J. Skilling The Eigenvalues of Mega-dimensional Matrices , 1989 .

[31]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[32]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  John Y. N. Cho,et al.  Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1 , 2001 .

[34]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[35]  Matthew J. Beal,et al.  The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures , 2003 .

[36]  Christoph Schnörr,et al.  Variational Adaptive Correlation Method for Flow Estimation , 2012, IEEE Transactions on Image Processing.

[37]  Jeff Gill,et al.  What are Bayesian Methods , 2008 .

[38]  D. Heitz,et al.  Power laws and inverse motion modelling: application to turbulence measurements from satellite images , 2012 .

[39]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..