Including Spatial Information in Clustering of Multi-Channel Images
暂无分享,去创建一个
[1] J. Xu. Knowledge Discovery and Data Mining , 2014, Computing Handbook, 3rd ed..
[2] P. Deb. Finite Mixture Models , 2008 .
[3] A. Vinciarelli,et al. Application of information retrieval techniques to single writer documents , 2005, Pattern Recognit. Lett..
[4] Adrian E. Raftery,et al. Incremental Model-Based Clustering for Large Datasets With Small Clusters , 2005 .
[5] Lutgarde M. C. Buydens,et al. Clustering multispectral images: a tutorial , 2005 .
[6] David W. Paglieroni,et al. Convergent coarseness regulation for segmented images , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[7] Joachim M. Buhmann,et al. Boundary-constrained agglomerative segmentation , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[8] Adrian E. Raftery,et al. Model-Based Clustering for Image Segmentation and Large Datasets via Sampling , 2004, J. Classif..
[9] Laurent Ferro-Famil,et al. Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[10] Dirk H. Hoekman,et al. A new polarimetric classification approach evaluated for agricultural crops , 2003, IEEE Trans. Geosci. Remote. Sens..
[11] M. Hazelton. Variable kernel density estimation , 2003 .
[12] Florence Tupin,et al. Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields , 2003, IEEE Trans. Geosci. Remote. Sens..
[13] Adrian E. Raftery,et al. Approximate Bayes Factors for Image Segmentation: The Pseudolikelihood Information Criterion (PLIC) , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[14] Qiong Jackson,et al. Adaptive Bayesian contextual classification based on Markov random fields , 2002, IEEE International Geoscience and Remote Sensing Symposium.
[15] Beata Walczak,et al. Hierarchical clustering extended with visual complements of environmental data set , 2002 .
[16] J. C. Noordam,et al. Multivariate image segmentation with cluster size insensitive fuzzy C-means , 2002 .
[17] Vikash Kumar,et al. A MRF model-based segmentation approach to classification for multispectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[18] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[19] Jie Liang,et al. Computational analysis of microarray gene expression profiles: clustering, classification, and beyond , 2002 .
[20] Shaoping Ma,et al. Correlation-Based Web Document Clustering for Adaptive Web Interface Design , 2002, Knowledge and Information Systems.
[21] C. Posse. Hierarchical Model-Based Clustering for Large Datasets , 2001 .
[22] Mausumi Acharyya,et al. An adaptive approach to unsupervised texture segmentation using M-Band wavelet transform , 2001, Signal Process..
[23] Karl Mosler,et al. A Cautionary Note on Likelihood Ratio Tests in Mixture Models , 2000 .
[24] Thomas L. Ainsworth,et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..
[25] Pekka Teppola,et al. Adaptive Fuzzy C-Means clustering in process monitoring , 1999 .
[26] Chris Fraley,et al. Algorithms for Model-Based Gaussian Hierarchical Clustering , 1998, SIAM J. Sci. Comput..
[27] Daniel A. Keim,et al. An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.
[28] D. Comaniciu,et al. Distribution Free Decomposition of Multivariate Data , 1998, Pattern Analysis & Applications.
[29] Stephen L. Durden,et al. A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..
[30] Silvana G. Dellepiane,et al. Synthetic aperture radar image segmentation by a detail preserving Markov random field approach , 1997, IEEE Trans. Geosci. Remote. Sens..
[31] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[32] Patrick Bouthemy,et al. Computation and analysis of image motion: A synopsis of current problems and methods , 1996, International Journal of Computer Vision.
[33] Yizong Cheng,et al. Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[34] Ron Kwok,et al. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .
[35] Richard G. Brereton,et al. Multivariate Pattern Recognition in Chemometrics: Illustrated by Case Studies , 1992 .
[36] W. Qian,et al. Estimation of parameters in hidden Markov models , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[37] L. Novak,et al. Bayes classification of terrain cover using normalized polarimetric data , 1988 .
[38] Subir Ghosh,et al. Statistical Analysis With Missing Data , 1988 .
[39] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[40] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[41] David J. Hand,et al. Discrimination and Classification , 1982 .
[42] Desire L. Massart,et al. Potential methods in pattern recognition : Part 2. CLUPOT —an unsupervised pattern recognition technique , 1981 .
[43] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[44] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[45] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[46] Ray A. Jarvis,et al. Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.
[47] C. Quesenberry,et al. A nonparametric estimate of a multivariate density function , 1965 .
[48] Geoffrey H. Ball,et al. ISODATA, A NOVEL METHOD OF DATA ANALYSIS AND PATTERN CLASSIFICATION , 1965 .
[49] P. Sivakumar,et al. A REVIEW ON IMAGE SEGMENTATION TECHNIQUES , 2016 .
[50] 李玉雲. Curriculum Vitae , 2015, Obere Extremität.
[51] A. W. Simonetti,et al. Investigation of brain tumor classification and its reliability using chemometrics on MR spectroscopy and MR imaging data , 2004 .
[52] Levent Ertoz,et al. A New Shared Nearest Neighbor Clustering Algorithm and its Applications , 2002 .
[53] Lutgarde M. C. Buydens,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cem.721 Mixture modelling of medical magnetic resonance data , 2002 .
[54] Padhraic Smyth,et al. Model selection for probabilistic clustering using cross-validated likelihood , 2000, Stat. Comput..
[55] Padhraic Smyth,et al. Modeling of Inhomogeneous Markov Random Fields with Applications to Cloud Screening , 1998 .
[56] Eric Pottier,et al. An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..
[57] Anil K. Jain,et al. A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..
[58] Adrian E. Raftery,et al. Bayes factors and model uncertainty , 1995 .
[59] A. Raftery,et al. Bayes factors , 1995 .
[60] R. Grieken,et al. Hierarchical cluster analysis with stopping rules built on Akaike's information criterion for aerosol particle classification based on electron probe X-ray microanalysis , 1994 .
[61] Belur V. Dasarathy,et al. Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .
[62] J. Zyl,et al. Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .
[63] John A. Richards,et al. Remote Sensing Digital Image Analysis , 1986 .
[64] Thomas S. Huang,et al. Image Sequence Analysis: Motion Estimation , 1981 .
[65] Larry D. Hostetler,et al. The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.
[66] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .