A Posteriori Error Estimation for Interior Penalty Finite Element Approximations of the Advection-Reaction Equation

In this note we consider residual-based a posteriori error estimation for finite element approximations of the transport equation. For the discretization we use piecewise affine continuous or discontinuous finite elements and symmetric stabilization of interior penalty type. The lowest order discontinuous Galerkin method using piecewise constant approximation is included as a special case. The key elements in the analysis are a saturation assumption and an approximation result for interpolation between discrete spaces.

[1]  A. Ern,et al.  A continuous finite element method with face penalty to approximate Friedrichs' systems , 2007 .

[2]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[3]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[4]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[5]  Johnny Guzmán,et al.  Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems , 2006, J. Num. Math..

[6]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..

[7]  Stefano Berrone Robustness in a posteriori error analysis for FEM flow models , 2002, Numerische Mathematik.

[8]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[9]  Erik Burman,et al.  Weighted error estimates of the continuous interior penalty method for singularly perturbed problems , 2008 .

[10]  Gert Lube,et al.  A STABILIZED SCHEME FOR THE LAGRANGE MULTIPLIER METHOD FOR ADVECTION-DIFFUSION EQUATIONS , 2004 .

[11]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[12]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[13]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[14]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[15]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[16]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .

[17]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[18]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Alexandre Ern,et al.  A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations , 2007 .

[21]  Abdellatif Agouzal,et al.  Some remarks about the hierarchical a posteriori error estimate , 2004 .

[22]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[23]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[24]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[25]  R. Rannacher,et al.  A posteriori error analysis for stabilised finite element approximations of transport problems , 2000 .

[26]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[27]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[28]  Endre Süli,et al.  Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity , 1996 .

[29]  Giancarlo Sangalli Robust a-posteriori estimator for advection-diffusion-reaction problems , 2008, Math. Comput..

[30]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[31]  Gerd Kunert A posteriori error estimation for convection dominated problems on anisotropic meshes , 2003 .

[32]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[33]  Ivo Babuška,et al.  Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .

[34]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .