Design of a CMOS A2I data converter: Theory, architecture and implementation

We present the design of an analog-to-information (A2I) converter consisting of parallel analog processing channels, whose output is sampled by traditional analog-to-digital converters (ADCs). The architecture employs a reconfigurable analog front-end that modulates the signal of interest with a high-speed digital chipping sequence and integrates the result prior to sampling at a low rate. This front-end is combined with a digital controller which generates the chipping sequences and processes the digitized samples. The result is a highly versatile architecture that is mapped efficiently on a single CMOS chip.

[1]  S. Kirolos,et al.  DepartmentofElectricalandComputerEngineering,RiceUniversity,Houston,TX DepartmentsofMathematicsandEECS,UniversityofMichigan,AnnArbor,MI , 2022 .

[2]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[3]  S. Kirolos,et al.  Practical Issues in Implementing Analog-to-Information Converters , 2006, 2006 6th International Workshop on System on Chip for Real Time Applications.

[4]  Paul Hasler,et al.  Compressive Sensing on a CMOS Separable-Transform Image Sensor , 2010, Proc. IEEE.

[5]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[6]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[7]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[8]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[9]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[10]  Yonina C. Eldar,et al.  Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals , 2007, IEEE Transactions on Signal Processing.

[11]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[12]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[13]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[14]  Richard G. Baraniuk,et al.  On the feasibility of hardware implementation of sub-Nyquist random-sampling based analog-to-information conversion , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[15]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.