Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo

[1]  Ashley V. Makela,et al.  Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. , 2022, Nano letters.

[2]  J. Leliaert,et al.  Magnetic nanoparticles in theranostic applications , 2022, Journal of Applied Physics.

[3]  Sri Ramulu Torati,et al.  Functionalization of Biotinylated Polyethylene Glycol on Live Magnetotactic Bacteria Carriers for Improved Stealth Properties , 2021, Biology.

[4]  N. Devaraj,et al.  Introduction: Click Chemistry. , 2021, Chemical reviews.

[5]  Amila Akagic,et al.  Multiple Object Trackers in OpenCV: A Benchmark , 2021, 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE).

[6]  Carmen C. Mayorga-Martinez,et al.  Magnetically Driven Micro and Nanorobots , 2021, Chemical reviews.

[7]  S. Misra,et al.  Magnetic Actuation Methods in Bio/Soft Robotics , 2020, Advanced Functional Materials.

[8]  Xinyu Wu,et al.  Sequential Magneto‐Actuated and Optics‐Triggered Biomicrorobots for Targeted Cancer Therapy , 2020, Advanced Functional Materials.

[9]  D. Schüler,et al.  An automated oxystat fermentation regime for microoxic cultivation of Magnetospirillum gryphiswaldense , 2020, Microbial Cell Factories.

[10]  L. Kirczuk,et al.  Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer? , 2020, Biology.

[11]  M. Vallet‐Regí,et al.  Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model , 2020, Advanced materials interfaces.

[12]  U. Lins,et al.  Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes? , 2020, Environmental microbiology.

[13]  Fernando Soto,et al.  Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses , 2018, Front. Bioeng. Biotechnol..

[14]  Julio Bastos-Arrieta,et al.  Bacterial Biohybrid Microswimmers , 2018, Front. Robot. AI.

[15]  M. Sitti,et al.  Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display , 2018, Scientific Reports.

[16]  A. Manz,et al.  Magnetic response of Magnetospirillum gryphiswaldense observed inside a microfluidic channel , 2017, Journal of Magnetism and Magnetic Materials.

[17]  C. Pierce,et al.  Tuning bacterial hydrodynamics with magnetic fields. , 2017, Physical review. E.

[18]  Metin Sitti,et al.  Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts , 2017, Advanced science.

[19]  D. Schüler,et al.  Bacterial magnetosomes - nature's powerful contribution to MPI tracer research. , 2017, Nanoscale.

[20]  Zhiyuan Zhang,et al.  Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction , 2016, Molecules.

[21]  S. Martel,et al.  Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions , 2016, Nature nanotechnology.

[22]  S. Martel Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. , 2016, Biomicrofluidics.

[23]  D. Schüler,et al.  Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium , 2016, Applied and Environmental Microbiology.

[24]  S. Mériaux,et al.  Magnetosomes, Biogenic Magnetic Nanomaterials for Brain Molecular Imaging with 17.2 T MRI Scanner , 2015, Advanced Healthcare Materials.

[25]  Mahama A. Traore,et al.  Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response. , 2014, Analytical chemistry.

[26]  Bahareh Behkam,et al.  Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems , 2014 .

[27]  R. Frankel,et al.  Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. , 2014, Biophysical journal.

[28]  M. R. Edwards,et al.  Influence of Magnetic Fields on Magneto-Aerotaxis , 2014, PloS one.

[29]  M. Soussan,et al.  Carbodiimide versus click chemistry for nanoparticle surface functionalization: a comparative study for the elaboration of multimodal superparamagnetic nanoparticles targeting αvβ3 integrins. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[30]  P. Rizkallah,et al.  Genetically encoding phenyl azide chemistry: new uses and ideas for classical biochemistry. , 2013, Biochemical Society transactions.

[31]  D. Bazylinski,et al.  Ecology, Diversity, and Evolution of Magnetotactic Bacteria , 2013, Microbiology and Molecular Reviews.

[32]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[33]  D. Schüler,et al.  Frequent Mutations within the Genomic Magnetosome Island of Magnetospirillum gryphiswaldense Are Mediated by RecA , 2011, Journal of bacteriology.

[34]  Jennifer A. Prescher,et al.  Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.

[35]  A. Tsourkas,et al.  Comparative Analysis of Nanoparticle-Antibody Conjugations: Carbodiimide Versus Click Chemistry , 2009, Molecular imaging.

[36]  U. Heyen,et al.  Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor , 2003, Applied Microbiology and Biotechnology.

[37]  Andrew B. Martin,et al.  Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.

[38]  D. Schüler,et al.  A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense , 1995 .

[39]  Henrique Lins de Barros,et al.  Motion of magnetotactic microorganisms , 1986 .

[40]  S. Goldhor Ecology , 1964, The Yale Journal of Biology and Medicine.