Embrittlement of RPV steels: An atom probe tomography perspective

Atom probe tomography has played a key role in the understanding of the embrittlement of neutron irradiated reactor pressure vessel steels through the atomic level characterization of the microstructure. Atom probe tomography has been used to demonstrate the importance of the post weld stress relief treatment in reducing the matrix copper content in high copper alloys, the formation of ∼2-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates during neutron irradiation in copper containing RPV steels, and the coarsening of these precipitates during post irradiation heat treatments. Atom probe tomography has been used to detect ∼2-nm-diameter nickel-, silicon- and manganese-enriched clusters in neutron irradiated low copper and copper free alloys. Atom probe tomography has also been used to quantify solute segregation to, and precipitation on, dislocations and grain boundaries.

[1]  Mikhail A. Sokolov,et al.  APT characterization of high nickel RPV steels , 2006 .

[2]  B. Radiguet,et al.  Atomic-level observation with three-dimensional atom probe of the solute behaviour in neutron-, ion- or electron-irradiated ferritic alloys , 2005 .

[3]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[4]  Stan T. Rosinski,et al.  Mechanical Property Changes in Reactor Vessel Materials Thermally Aged for 209 000 H at 260°C , 2006 .

[5]  Le Steele,et al.  Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Fourth Volume) , 1986 .

[6]  G. E. Lucas,et al.  Recent progress in understanding reactor pressure vessel steel embrittlement , 1998 .

[7]  K. F. Russell,et al.  Atom probe tomography characterization of radiation-sensitive KS-01 weld , 2003 .

[8]  B. Radiguet,et al.  Three‐dimensional atom probe study of irradiated, annealed and re‐irradiated VVER 440 weld metals , 2004 .

[9]  M. K. Miller,et al.  Atom probe tomography characterization of solute segregation to dislocations and interfaces , 2006 .

[10]  V. Massardier,et al.  Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle X-ray scattering and tomographic atom probe , 2005 .

[11]  K. F. Russell,et al.  APT characterization of irradiated high nickel RPV steels , 2007 .

[12]  J. Spitznagel,et al.  Field-ion microscope detection of ultra-fine defects in neutron-irradiated fe-0.34 pct cu alloy , 1978 .

[13]  K. F. Russell,et al.  Atom probe tomography of radiation-sensitive KS-01 weld , 2005 .

[14]  M. K. Miller,et al.  The development of atom probe field-ion microscopy , 2000 .

[15]  K. F. Russell,et al.  Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences , 2000 .

[16]  Michael K. Miller,et al.  Atom probe tomography characterization of solute segregation to dislocations , 2006, Microscopy research and technique.

[17]  K. F. Russell,et al.  APFIM characterization of a high phosphorus Russian RPV weld , 1996 .

[18]  K. F. Russell,et al.  Atom probe characterization of the microstructure of nuclear pressure vessel surveillance materials after neutron irradiation and after annealing treatments , 1997 .

[19]  Michael K Miller,et al.  Understanding Pressure Vessel Steels: An Atom Probe Perspective , 2000 .

[20]  B. Wirth,et al.  Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys : a comparison of APT and SANS data , 2003 .

[21]  K. F. Russell,et al.  Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld , 1995 .

[22]  K. F. Russell,et al.  Characterization of phosphorus segregation in neutron-irradiated pressure vessel steels by atom probe field ion microscopy , 1994 .

[23]  Mikhail A. Sokolov,et al.  The effects of irradiation, annealing and reirradiation on RPV steels , 2006 .

[24]  P. Pareige,et al.  Synthesis of atom probe experiments on irradiation-induced solute segregation in French ferritic pressure vessel steels , 2000 .

[25]  Richard G. Forbes,et al.  Atom probe tomography , 2000 .

[26]  S. Babu,et al.  Effect of stress relief temperature and cooling rate on pressure vessel steel welds , 2002 .

[27]  Roger E. Stoller,et al.  Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: an atom probe study , 1997 .

[28]  D. McLean,et al.  Grain boundaries in metals , 1958 .

[29]  E. Eason,et al.  Embrittlement recovery due to annealing of reactor pressure vessel steels , 1998 .

[30]  G. Smith,et al.  Atom Probe Microanalysis: Principles and Applications to Materials Problems , 1989 .

[31]  K. F. Russell,et al.  Atom probe characterization of copper solubility in the Midland weld after neutron irradiation and thermal annealing , 1997 .

[32]  M. G. Hetherington,et al.  Atom probe field-ion microscopy: A technique for microstructural characterization of irradiated materials on the atomic scale , 1989 .