Fuzzy Clustering with Repulsive Prototypes

A well known issue with prototype-based clustering is the user's obligation to know the right number of clusters in a dataset in advance or to determine it as a part of the data analysis process. There are different approaches to cope with this non-trivial problem. This paper follows the approach to address this problem as an integrated part of the clustering process. An extension to repulsive fuzzy c-means clustering is proposed equipping non-Euclidean prototypes with repulsive properties. Experimental results are presented that demonstrate the feasibility of our technique.

[1]  Frank Klawonn,et al.  Understanding and Controlling the Membership Degrees in Fuzzy Clustering , 2005, GfKl.

[2]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[3]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[4]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[5]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Anil K. Jain,et al.  Bootstrap technique in cluster analysis , 1987, Pattern Recognit..

[7]  James C. Bezdek,et al.  Visual cluster validity for prototype generator clustering models , 2003, Pattern Recognit. Lett..

[8]  Frank Klawonn,et al.  Visualization of Single Clusters , 2006, ICAISC.

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  Xiao-Hong Wu,et al.  Noise Clustering Using a New Distance , 2006, 2006 IEEE International Conference on Information Acquisition.

[11]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[12]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Rudolf Kruse,et al.  Clustering with Repulsive Prototypes , 2008, GfKl.

[14]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[15]  Xiao-hong Wu Noise Clustering Using aNewDistance , 2006 .

[16]  F. Klawonn Fuzzy clustering: insights and a new approach , 2004 .

[17]  Frank Klawonn,et al.  Learning Methods for Air Traffic Management , 2005, ECSQARU.

[18]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[19]  James M. Keller,et al.  Dunn’s cluster validity index as a contrast measure of VAT images , 2008, 2008 19th International Conference on Pattern Recognition.

[20]  Hiroshi Murase,et al.  Unsupervised face recognition from image sequences based on clustering with attraction and repulsion , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[22]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[23]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[24]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[25]  Chyun-Shin Cheng,et al.  A repulsive clustering algorithm for gene expression data , 2003, Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings..

[26]  P. N. Suganthan,et al.  Robust growing neural gas algorithm with application in cluster analysis , 2004, Neural Networks.

[27]  Habtom W. Ressom,et al.  Adaptive double self-organizing maps for clustering gene expression profiles , 2003, Neural Networks.

[28]  Juan Pablo Wachs,et al.  A Method to Enhance the 'Possibilistic C-Means with Repulsion' Algorithm based on Cluster Validity Index , 2004, WSC.

[29]  Rudolf Kruse,et al.  Data Summarisation by Typicality-based Clustering for Vectorial and Non Vectorial Data , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[30]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  James C. Bezdek,et al.  Scalable visual assessment of cluster tendency for large data sets , 2006, Pattern Recognit..

[32]  Frank Klawonn,et al.  Visual Inspection of Fuzzy Clustering Results , 2003 .

[33]  Uzay Kaymak,et al.  Improved covariance estimation for Gustafson-Kessel clustering , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[34]  Kap Luk Chan,et al.  Similarity-Driven Cluster Merging Method for Unsupervised Fuzzy Clustering , 2004, UAI.

[35]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .