A network-based interface for the exploration of high-dimensional data spaces

The navigation of high-dimensional data spaces remains challenging, making multivariate data exploration difficult. To be effective and appealing for mainstream application, navigation should use paradigms and metaphors that users are already familiar with. One such intuitive navigation paradigm is interactive route planning on a connected network. We have employed such an interface and have paired it with a prominent high-dimensional visualization paradigm showing the N-D data in undistorted raw form: parallel coordinates. In our network interface, the dimensions form nodes that are connected by a network of edges representing the strength of association between dimensions. A user then interactively specifies nodes/edges to visit, and the system computes an optimal route, which can be further edited and manipulated. In our interface, this route is captured by a parallel coordinate data display in which the dimension ordering is configured by the specified route. Our framework serves both as a data exploration environment and as an interactive presentation platform to demonstrate, explain, and justify any identified relationships to others. We demonstrate our interface within a business scenario and other applications.

[1]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[2]  J. Hartigan Printer graphics for clustering , 1975 .

[3]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[4]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[5]  Alfred Inselberg,et al.  The automated multidimensional detective , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[6]  Matthew O. Ward,et al.  Mapping Nominal Values to Numbers for Effective Visualization , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[7]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[8]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[9]  Marcus A. Magnor,et al.  Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[10]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.

[11]  Pak Chung Wong,et al.  Multivariate visualization using metric scaling , 1997 .

[12]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[13]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004 .

[14]  Jos B. T. M. Roerdink,et al.  Visualizing High‐Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis , 2011, Comput. Graph. Forum.

[15]  Hans Hinterberger,et al.  Comparative multivariate visualization across conceptually different graphic displays , 1994, Seventh International Working Conference on Scientific and Statistical Database Management.

[16]  Klaus Mueller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Illustrative Parallel Coordinates , 2022 .

[17]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[18]  Haim Levkowitz,et al.  Enhanced High Dimensional Data Visualization through Dimension Reduction and Attribute Arrangement , 2006, Tenth International Conference on Information Visualisation (IV'06).

[19]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[20]  Masaru Tomita,et al.  Genome Projector: zoomable genome map with multiple views , 2009, BMC Bioinformatics.

[21]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[22]  Ping Guo,et al.  Visual Analysis of the Air Pollution Problem in Hong Kong , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Matthew O. Ward,et al.  Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces , 2000, IEEE Trans. Vis. Comput. Graph..

[26]  Holger Theisel Higher Order Parallel Coordinates , 2000, VMV.

[27]  Dominique Brodbeck,et al.  Visualization of large-scale customer satisfaction surveys using a parallel coordinate tree , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[28]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[29]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[30]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .