Laser cooling in solids: advances and prospects

This review discusses the progress and ongoing efforts in optical refrigeration. Optical refrigeration is a process in which phonons are removed from a solid by anti-Stokes fluorescence. The review first summarizes the history of optical refrigeration, noting the success in cooling rare-earth-doped solids to cryogenic temperatures. It then examines in detail a four-level model of rare-earth-based optical refrigeration. This model elucidates the essential roles that the various material parameters, such as the spacing of the energy levels and the radiative quantum efficiency, play in the process of optical refrigeration. The review then describes the experimental techniques for cryogenic optical refrigeration of rare-earth-doped solids employing non-resonant and resonant optical cavities. It then examines the work on laser cooling of semiconductors, emphasizing the differences between optical refrigeration of semiconductors and rare-earth-doped solids and the new challenges and advantages of semiconductors. It then describes the significant experimental results including the observed optical refrigeration of CdS nanostructures. The review concludes by discussing the engineering challenges to the development of practical optical refrigerators, and the potential advantages and uses of these refrigerators.

[1]  Jianzhong Li Laser cooling of semiconductor quantum wells: Theoretical framework and strategy for deep optical refrigeration by luminescence upconversion , 2007 .

[2]  F. Micheron,et al.  Comparison of Peltier and anti-Stokes optical coolings , 2000 .

[3]  Clark,et al.  Laser cooling in the condensed phase by frequency up-conversion. , 1996, Physical review letters.

[4]  J. Geusic,et al.  Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet , 1968 .

[5]  Mansoor Sheik-Bahae,et al.  Optical refrigeration : science and applications of laser cooling of solids , 2009 .

[6]  T. R. Gosnell,et al.  Laser cooling of a solid by 65K starting from room temperature. , 1997, Optics letters.

[7]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[8]  Mansoor Sheik-Bahae,et al.  Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry , 2010 .

[9]  N. Kwong,et al.  Large excitonic enhancement of optical refrigeration in semiconductors. , 2006, Physical review letters.

[10]  Christof Debaes,et al.  Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering. , 2007, Physical review letters.

[11]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[12]  Y. Fukuda,et al.  Observation of ultrafast spin-lattice relaxation in Tm2+-doped CaF2 and SrF2 crystals by optical means , 2000 .

[13]  Vitaly V. Samartsev,et al.  Solid state lasers with internal laser refrigeration effect , 2001, Other Conferences.

[14]  Markus P. Hehlen,et al.  Model of laser cooling in theYb3+-doped fluorozirconate glass ZBLAN , 2007 .

[15]  T. R. Gosnell,et al.  Laser cooling of a solid by 21 K starting from room temperature , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[16]  Shui-Qing Yu,et al.  Influence of photon recycling on semiconductor luminescence refrigeration , 2006 .

[17]  Galina Nemova,et al.  Laser cooling of solids , 2009, 0907.1926.

[18]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[19]  J. Thiede,et al.  Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling , 2006 .

[20]  Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses , 1999 .

[21]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[22]  G. Rupper,et al.  The relation between light absorption and luminescence in laser cooling of two-dimensional semiconductor systems , 2007, SPIE LASE.

[23]  Ashok K. Sood,et al.  Advances in Infrared Detector Array Technology , 2013 .

[24]  Mansoor Sheik-Bahae,et al.  Resonant cavity-enhanced absorption for optical refrigeration , 2010 .

[25]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[26]  Mauro Tonelli,et al.  Novel approach for solid state cryocoolers. , 2015, Optics express.

[27]  R. Epstein,et al.  Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration , 1999 .

[28]  I. Favero,et al.  Mechanical Resonators in the Middle of an Optical Cavity , 2014 .

[29]  M. Sheik-Bahae,et al.  Thermal management and design for optical refrigeration , 2016, SPIE OPTO.

[30]  Rajeev J Ram,et al.  Thermoelectrically pumped light-emitting diodes operating above unity efficiency. , 2012, Physical review letters.

[31]  Garry Rumbles,et al.  Comparative intra- versus extra-cavity laser cooling efficiencies , 2002 .

[32]  Dan T. Nguyen,et al.  All fiber approach to solid-state laser cooling , 2012, OPTO.

[33]  Raman Kashyap,et al.  Fiber Bragg gratings for low-temperature measurement. , 2014, Optics Express.

[34]  Band gap engineering for laser cooling of semiconductors , 2006 .

[35]  Mansoor Sheik-Bahae,et al.  Absorption spectra of wide-gap semiconductors in their transparency region , 2003 .

[36]  Mansoor Sheik-Bahae,et al.  Differential luminescence thermometry in semiconductor laser cooling , 2006, SPIE OPTO.

[37]  LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser cooling of a semiconductor (optical heat engine) , 1996 .

[38]  Mansoor Sheik-Bahae,et al.  Optical cryocoolers for sensors and electronics , 2014, Defense + Security Symposium.

[39]  N. Kwong,et al.  Optical refrigeration of GaAs: Theoretical study , 2007 .

[40]  G. Agrawal,et al.  Nonlinear Fiber Optics Ed. 5 , 2012 .

[41]  Raman Kashyap,et al.  Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. , 2013, Optics express.

[42]  Jeffrey G. Cederberg,et al.  Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling , 2013 .

[43]  G. G. Stokes On the Change of Refrangibility of Light , 1852 .

[44]  T. H. Gfroerer,et al.  Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector , 1998 .

[45]  C. Mungan,et al.  New materials for optical cooling , 2000 .

[46]  Mansoor Sheik-Bahae,et al.  Cryogenic optical refrigeration , 2012 .

[47]  Mansoor Sheik-Bahae,et al.  Local laser cooling of Yb:YLF to 110 K. , 2011, Optics express.

[48]  S. Greenfield,et al.  Advances in Laser Cooling of Thulium-Doped Glass , 2003 .

[49]  G. G. Stokes On the change of refrangibility of light , 1850 .

[50]  Jun Ye,et al.  Polar molecules in the quantum regime , 2011 .

[51]  G. Weimann,et al.  Cooling of a semiconductor by luminescence up-conversion , 1999 .

[52]  G. Rupper,et al.  Theory of luminescence and optical refrigeration in p-doped semiconductors , 2008, SPIE OPTO.

[53]  Seth D. Melgaard,et al.  Cryogenic optical refrigeration: Laser cooling of solids below 123 K , 2013 .

[54]  H. Rubinsztein-Dunlop,et al.  Laser cooling of a solid from ambient temperature , 2001 .

[55]  Mansoor Sheik-Bahae,et al.  Precise determination of minimum achievable temperature for solid-state optical refrigeration , 2013 .

[56]  Mansoor Sheik-Bahae,et al.  Precision, all-optical measurement of external quantum efficiency in semiconductors , 2011 .

[57]  Q. Xiong,et al.  Phonon‐Assisted Anti‐Stokes Lasing in ZnTe Nanoribbons , 2016, Advanced materials.

[58]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[59]  Jacob B Khurgin,et al.  Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration , 2014, 1405.1693.

[60]  Stephen C. Rand Laser cooling of solids by stimulated Raman scattering and fluorescence , 2012, OPTO.

[61]  A. V. Ivanov,et al.  Laser cooling of doped crystals by methods of coherent pumping , 2015, Photonics West - Optoelectronic Materials and Devices.

[62]  Alfred Kastler,et al.  Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique , 1950 .

[63]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[64]  Alexander R. Albrecht,et al.  First Solid-state Cooling Below 100K , 2015 .

[65]  J. Adam,et al.  Anti-Stokes laser-induced internal cooling of Yb 3+ -doped glasses , 2000 .

[66]  G. Rumbles,et al.  Experimental demonstration of intracavity solid-state laser cooling of Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glass , 2004 .

[67]  S. Birner,et al.  Driving perpendicular heat flow: (p×n)-type transverse thermoelectrics for microscale and cryogenic Peltier cooling. , 2013, Physical review letters.

[68]  Dan T. Nguyen,et al.  Conceptual study of a fiber-optical approach to solid-state laser cooling , 2011, OPTO.

[69]  Peter J. Pauzauskie,et al.  Laser refrigeration of hydrothermal nanocrystals in physiological media , 2015, Proceedings of the National Academy of Sciences.

[70]  Mansoor Sheik-Bahae,et al.  Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. , 2013, Optics letters.

[71]  Taiju Tsuboi,et al.  Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method , 2006 .

[72]  N. Kwong,et al.  Theory of laser cooling of semiconductor quantum wells , 2008 .

[73]  Dan T. Nguyen,et al.  Towards all-fiber optical coolers using Tm-doped glass fibers , 2013, Photonics West - Optoelectronic Materials and Devices.

[74]  Lei Chen,et al.  A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity , 2011, Nature Photonics.

[75]  Jun Zhang,et al.  Laser cooling of CdS nanobelts: thickness matters. , 2013, Optics express.

[76]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[77]  L. A Rivlin,et al.  Laser cooling of semiconductors , 1997 .

[78]  S. Stenholm,et al.  Heating or cooling collisionally aided fluorescence , 1978 .

[79]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[80]  T. R. Gosnell Laser cooling of a solid by 65 K starting from room temperature , 1998 .

[81]  Joseph J. Brown,et al.  Measurements of optical refrigeration in ytterbium-doped crystals , 2001 .

[82]  H S Cao,et al.  Cooling a low noise amplifier with a micromachined cryogenic cooler. , 2013, The Review of scientific instruments.

[83]  Mauro Tonelli,et al.  Single fluoride crystals as materials for laser cooling applications , 2007, SPIE LASE.

[84]  Mansoor Sheik-Bahae,et al.  Effect of n-p-n heterostructures on interface recombination and semiconductor laser cooling , 2010 .

[85]  V. V. Bogatyrenko,et al.  Radiative cooling by light down conversion of InGaN light emitting diode bonded to a Si wafer , 2013 .

[86]  T. Carmon,et al.  Observation of spontaneous Brillouin cooling , 2011, Nature Physics.

[87]  Rolindes Balda,et al.  Anti-stokes laser cooling in bulk erbium-doped materials. , 2006, Physical review letters.

[88]  G. Bahl,et al.  Raman Cooling of Solids through Photonic Density of States Engineering , 2015, 1507.08936.

[89]  Mansoor Sheik-Bahae,et al.  Optical refrigeration of Tm:YLF and Ho:YLF crystals , 2016, SPIE OPTO.

[90]  Steven R. Bowman,et al.  Lasers without internal heat generation , 1999 .

[91]  N. Kwong,et al.  Self-consistent T-matrix theory of semiconductor light-absorption and luminescence , 2009 .

[92]  G. Rupper,et al.  Theory of semiconductor laser cooling at low temperatures , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[93]  C. Hoyt,et al.  Laser cooling in thulium-doped solids , 2003 .

[94]  S. Greenfield,et al.  Cooling to 208K by optical refrigeration , 2005 .

[95]  Mansoor Sheik-Bahae,et al.  Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8. , 2008, Optics express.

[97]  V. Babajanyan Spectroscopic study of the expected optical cooling effect of LiNbO3:Er3+ crystal , 2013 .

[98]  W. Whitney,et al.  Laser cooling by spontaneous anti-Stokes scattering (A) , 1980 .

[99]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[100]  P. K. Basu Theory of Optical Processes in Semiconductors , 2003 .

[101]  R. Epstein,et al.  Development of the Los Alamos solid-state optical refrigerator , 1998 .

[102]  V. Samartsev,et al.  Laser Cooling of Solids , 2009 .

[103]  C. Mungan Radiation thermodynamics with applications to lasing and fluorescent cooling , 2005 .

[104]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[105]  Mansoor Sheik-Bahae,et al.  Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures , 2005 .

[106]  Seth Lloyd,et al.  Quantum-mechanical Maxwell’s demon , 1997 .

[107]  Kai Siegbahn,et al.  Radiation Detection and Measurement, 3rd Edition, by Glenn Knoll; Wiley, New York, 2000; Price (hardcover), US$ 98.95; ISBN: 0-471-07338-5 , 2000 .

[108]  Mauro Tonelli,et al.  Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals. , 2014, Optics express.

[109]  Raman Kashyap,et al.  Development of ytterbium-doped oxyfluoride glasses for laser cooling applications , 2016, Scientific Reports.

[110]  Jacob B Khurgin,et al.  Surface plasmon assisted laser cooling of solids , 2007, 2007 Quantum Electronics and Laser Science Conference.

[111]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[112]  Allan J. Mord,et al.  Performance modeling of optical refrigerators , 2006 .

[113]  Raman Kashyap,et al.  Optical refrigeration of Yb3+:YAG nanocrystals , 2015, Photonics West - Optoelectronic Materials and Devices.

[114]  Ronald M. Keyser,et al.  New cooling methods for HPGE detectors and associated electronics , 2005 .

[115]  J. Khurgin Role of bandtail states in laser cooling of semiconductors , 2008 .

[116]  Markus P. Hehlen,et al.  Crystal-field effects in fluoride crystals for optical refrigeration , 2010, OPTO.

[117]  Mansoor Sheik-Bahae,et al.  Materials for Optical Cryocoolers , 2013 .

[118]  W. Kühlbrandt The Resolution Revolution , 2014, Science.

[119]  Alexander R. Albrecht,et al.  Solid-state optical refrigeration to sub-100 Kelvin regime , 2016, Scientific Reports.

[120]  D. Emin Laser cooling via excitation of localized electrons , 2007 .

[121]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[122]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[123]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids [Laser Photon. Rev. 3, No. 1-2, 67-84 (2009)] , 2009 .

[124]  Raman Kashyap,et al.  Laser cooling with Tm 3+ -doped oxy-fluoride glass ceramic , 2012 .

[125]  Mauro Tonelli,et al.  Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal , 2006 .

[126]  Mansoor Sheik-Bahae,et al.  Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs). , 2014, Optics express.

[127]  Steven R Bowman,et al.  Optical cooling in Er3+:KPb2Cl5. , 2009, Optics express.

[128]  U. Vogl,et al.  Laser cooling by collisional redistribution of radiation , 2009, Nature.

[129]  T. H. Gfroerer,et al.  External radiative quantum efficiency of 96% from a GaAs / GaInP heterostructure , 1997 .

[130]  M. Sheik-Bahae,et al.  Can laser light cool semiconductors? , 2004, Physical review letters.

[131]  M. Sheik-Bahae,et al.  Advances in laser cooling of semiconductors , 2006, SPIE OPTO.

[132]  Alessandra Toncelli,et al.  Laser cooling of solids: New results with single fluoride crystals , 2007 .

[133]  G. Rupper,et al.  The role of finite spatial beam profiles on photo-luminescence and laser cooling in GaAs structures , 2009, OPTO.

[134]  R. Kashyap,et al.  Laser cooling with PbSe colloidal quantum dots , 2012 .

[135]  Jun Zhang,et al.  Laser cooling of organic–inorganic lead halide perovskites , 2015, Nature Photonics.

[136]  M. Tonelli,et al.  Laser cooling of Yb3+-doped BaY2F8 single crystal , 2006 .

[137]  Epstein,et al.  Observation of anti-stokes fluorescence cooling in thulium-doped glass , 2000, Physical review letters.

[138]  H. Rubinsztein-Dunlop,et al.  Condensed-phase optical refrigeration , 2003 .

[139]  Mansoor Sheik-Bahae,et al.  Effect of high carrier density on luminescence thermometry in semiconductors , 2007, SPIE LASE.

[140]  Donald R. Herriott,et al.  Folded Optical Delay Lines , 1965 .

[141]  Baoling Huang,et al.  Solid-state semiconductor optical cryocooler based on CdS nanobelts. , 2014, Nano letters.

[142]  S. Yatsiv Anti-Stokes Fluorescence as a Cooling Process , 1961 .

[143]  Entropy and efficiency in laser cooling of solids , 2007 .

[144]  P. K. Basu,et al.  Theory of optical processes in semiconductors : bulk and microstructures , 1997 .

[145]  Yujie J. Ding,et al.  Upconversion Due to Optical-Phonon-Assisted Anti-Stokes Photoluminescence in Bulk GaN , 2015 .

[146]  Peter J. Pauzauskie,et al.  Laser-refrigeration of rare-earth-doped nanocrystals in water , 2015, Photonics West - Optoelectronic Materials and Devices.

[147]  G. Knoll Radiation detection and measurement , 1979 .

[148]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[149]  Mansoor Sheik-Bahae,et al.  Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K. , 2014, Optics express.

[150]  M. A. Arriandiaga,et al.  On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass , 2001 .

[151]  Mansoor Sheik-Bahae,et al.  Fast differential luminescence thermometry , 2009, OPTO.