A January 2005 invitation to random groups

Random groups provide a rigorous way to tackle such questions as “What does a typical (finitely generated) group look like?” or “What is the behavior of an element of a group when nothing particular happens?” We review the results obtained on random groups as of January 2005. We give proper definitions and list known properties of typical groups. We also emphasize properties of random elements in a given group. In addition we present more specific, randomly twisted group constructions providing new, “wild” examples of groups. A comprehensive discussion of open problems and perspectives is included. 2000 Mathematics Subject Classification: 20F65, 20P05, 60B99, 20F05, 20F67.

[1]  Goulnara Arzhantseva,et al.  Generic properties of finitely presented groups and howson's theorem , 1998 .

[2]  Brian H. Bowditch,et al.  A short proof that a subquadratic isoperimetric inequality implies a linear one. , 1995 .

[3]  Christophe Champetier,et al.  L’espace des groupes de type fini , 2000 .

[4]  P. Schupp,et al.  Delzant's $T$-invariant, Kolmogorov complexity and one-relator groups , 2003, math/0305353.

[5]  G. Skandalis Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue , 2000 .

[6]  A. Yu. Ol'shanskii Hyperbolicity of Groups with Subquadratic isoperimetric inequality , 1991, Int. J. Algebra Comput..

[7]  А. Г. Шухов,et al.  О зависимости показателя роста от длины определяющего соотношения@@@On the dependence of the growth exponent on the length of the defining relation , 1999 .

[8]  Ilya Kapovich,et al.  Genericity, the Arzhantseva-Ol’shanskii method and the isomorphism problem for one-relator groups , 2002, math/0210307.

[9]  R. Grigorchuk Degrees of Growth of Finitely Generated Groups, and the Theory of Invariant Means , 1985 .

[10]  Eliyahu Rips,et al.  Subgroups of small Cancellation Groups , 1982 .

[11]  I. Bumagina The Hopf Property for Subgroups of Hyperbolic Groups , 2004 .

[12]  D. Epstein,et al.  Computation in Word-Hyperbolic Groups , 1998, Int. J. Algebra Comput..

[13]  Graham A. Niblo,et al.  Groups acting on cubes and Kazhdan’s property (T) , 1998 .

[14]  Etienne Ghys,et al.  Essays on geometry and related topics : mémoires dédiés à André Haefliger , 2001 .

[15]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[16]  Z. Sela,et al.  Structure and Rigidity in (Gromov) Hyperbolic Groups and Discrete Groups in Rank 1 Lie Groups II , 1997 .

[17]  Goulnara Arzhantseva,et al.  A property of subgroups of infinite index in a free group , 2000 .

[18]  Yves Cornulier A note on quotients of word hyperbolic groups with Property (T) , 2005, math/0504193.

[19]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[20]  Bogdan Nica Cubulating spaces with walls , 2004 .

[21]  L. Guyot Estimations de dimensions de Minkowski dans l’espace des groupes marqués , 2006, math/0606014.

[22]  J. Dixon Probabilistic Group Theory , 2004 .

[23]  V. Lafforgue,et al.  Counterexamples to the Baum—Connes conjecture , 2002 .

[24]  S. Ivanov,et al.  Hyperbolic groups and their quotients of bounded exponents , 1996 .

[25]  A. Valette,et al.  Spaces with measured walls, the Haagerup property and property (T) , 2004, Ergodic Theory and Dynamical Systems.

[26]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[27]  Stephen J. Pride,et al.  Subgroups of small cancellation groups. , 1984 .

[28]  Z. Sela ENDOMORPHISMS OF HYPERBOLIC GROUPS I: THE HOPF PROPERTY , 1999 .

[29]  Growth tightness for word hyperbolic groups , 2002 .

[30]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[31]  G. Arzhantseva,et al.  On the Cayley graph of a generic finitely presented group , 2004 .

[32]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[33]  Graham Niblo,et al.  From Wall Spaces to Cat(0) Cube Complexes , 2005, Int. J. Algebra Comput..

[34]  Ilya Kapovich,et al.  Average-case complexity and decision problems in group theory , 2002, ArXiv.

[35]  D. Wise,et al.  Every group is an outer automorphism group of a finitely generated group , 2005 .

[36]  R. Zecchina,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theoretical Computer Science.

[37]  A. Valette,et al.  Groups with the Haagerup Property , 2001 .

[38]  Mu-Tao Wang A fixed point theorem of discrete group actions on Riemannian manifolds , 1998 .

[39]  C. Champetier Cocroissance Des Groupes À Petite Simplification , 1993 .

[40]  G. Swarup On the cut point conjecture , 1996 .

[41]  H. Takai On The Baum-Connes Conjecture , 1991 .

[42]  Guoliang Yu,et al.  The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space , 2000 .

[43]  Robert H. Gilman,et al.  Geometric and Computational Perspectives on Infinite Groups , 1995 .

[44]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[45]  Rostislav Grigorchuk,et al.  On problems related to growth, entropy, and spectrum in group theory , 1997 .

[46]  Yehuda Shalom,et al.  Rigidity of commensurators and irreducible lattices , 2000 .

[47]  M. Gromov,et al.  CAT(κ)-Spaces: Construction and Concentration , 2004 .

[48]  A. Valette Introduction To The Baum-Connes Conjecture , 2002 .

[49]  Graham A. Niblo METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .

[50]  N. Gupta,et al.  On groups in which every element has finite order , 1989 .

[51]  SERGEI V. IVANOV,et al.  The Free Burnside Groups of Sufficiently Large exponents , 1994, Int. J. Algebra Comput..

[52]  John R. Stallings,et al.  Topology of finite graphs , 1983 .

[53]  L. Silberman Addendum by L. Silberman To ¶"Random walk in random groups" by M. Gromov , 2003 .

[54]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[55]  A. Yu. Ol'shanskii,et al.  On Residualing Homomorphisms and G-Subgroups of hyperbolic Groups , 1993, International journal of algebra and computation.

[56]  M. Gromov,et al.  Random walk in random groups , 2003 .

[57]  N. Higson The Baum-Connes conjecture. , 1998 .

[58]  W. Ballmann,et al.  On L2-cohomology and Property (T) for Automorphism Groups of Polyhedral Cell Complexes , 1997 .

[59]  David B. A. Epstein,et al.  The Linearity of the Conjugacy Problem in Word-hyperbolic Groups , 2006, Int. J. Algebra Comput..

[60]  R. D. Anderson A Characterization of the Universal Curve and a Proof of Its Homogeneity , 1958 .

[61]  T. Delzant Sous-groupes distingués et quotients des groupes hyperboliques , 1996 .

[62]  Cayley graphs containing expanders , after Gromov , 2003 .

[63]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[64]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[65]  Uniform embeddings of hyperbolic groups in hilbert spaces , 1992 .

[66]  Simona Cocco,et al.  Phase transitions and complexity in computer science: an overview of the statistical physics approach to the random satisfiability problem , 2002 .

[67]  Simon Thomas,et al.  On the Complexity of the Isomorphism Relation for Finitely Generated Groups , 1998 .

[68]  Frederic Paulin,et al.  Simplicite de groupes d'automorphismes d'espaces a courbure negative , 1998, math/9812167.

[69]  Vincent Lafforgue,et al.  K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , 2002 .

[70]  T. Delzant Décomposition d'un groupe en produit libre ou somme amalgamée. , 1996 .

[71]  Y. Ollivier Sharp phase transition theorems for hyperbolicity of random groups , 2003, math/0301187.

[72]  Yves Cornulier ERRATUM TO FINITELY PRESENTABLE, NON-HOPFIAN GROUPS WITH KAZHDAN'S PROPERTY (T) AND INFINITE OUTER AUTOMORPHISM GROUP , 2005, math/0502140.

[73]  Ilya Kapovich,et al.  Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups , 2003 .

[74]  M. Kreck The Novikov Conjecture: Geometry and Algebra , 2005 .

[75]  John Stillwell The word problem and the isomorphism problem for groups , 1982 .

[76]  Christophe Champetier,et al.  Petite simplification dans les groupes hyperboliques , 1994 .

[77]  Y. Ollivier Cogrowth and spectral gap of generic groups , 2004, math/0401048.

[78]  Y. Ollivier,et al.  Kazhdan groups with infinite outer automorphism group , 2004, math/0409203.

[79]  Vincent Guirardel,et al.  Limit groups as limits of free groups , 2005 .

[80]  Alain Valette,et al.  ON SPECTRA OF SIMPLE RANDOM WALKS ON ONE-RELATOR GROUPS , 1996 .

[81]  Derek F. Holt,et al.  Word-Hyperbolic Groups Have Real-Time Word Problem , 2000, International journal of algebra and computation.

[82]  Ilya Kapovich,et al.  Generic-case complexity, decision problems in group theory and random walks , 2002, ArXiv.

[83]  Michah Sageev,et al.  Ends of Group Pairs and Non‐Positively Curved Cube Complexes , 1995 .

[84]  Panos Papasoglu An algorithm detecting hyperbolicity , 1994, Geometric and Computational Perspectives on Infinite Groups.

[85]  Daniel T. Wise,et al.  Cubulating small cancellation groups , 2004 .

[86]  Anatoly M. Vershik,et al.  Dynamic theory of growth in groups: Entropy, boundaries, examples , 2000 .

[87]  Z. Sela Diophantine geometry over groups VI: the elementary theory of a free group , 2006 .

[88]  Joel M. Cohen Cogrowth and amenability of discrete groups , 1982 .

[89]  G. Skandalisa,et al.  The coarse Baum – Connes conjecture and groupoids , 2002 .

[90]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[91]  Z. Sela The isomorphism problem for hyperbolic groups I , 1995 .

[92]  Andrzej Zuk,et al.  Property (T) and Kazhdan constants for discrete groups , 2003 .

[93]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[94]  Alain Connes,et al.  CYCLIC COHOMOLOGY, THE NOVIKOV CONJECTURE AND HYPERBOLIC GROUPS , 1990 .

[95]  Igor Mineyev,et al.  The Baum-Connes conjecture for hyperbolic groups , 2001, math/0105086.

[96]  P. Pansu Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles , 1998 .

[97]  A. Valette Nouvelles approches de la propriété (T) de Kazhdan , 2003 .

[98]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[99]  J. W. S. Cassels,et al.  Geometric Group Theory: Asymptotic Invariants of Infinite Groups, M. Gromov , 1993 .

[100]  Mladen Bestvina,et al.  The boundary of negatively curved groups , 1991 .

[101]  A. Zuk,et al.  La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres , 1996 .

[102]  S. Ivanov On the Burnside problem for groups of even exponent , 1998 .