Microwaving Biological Cells: Intracellular Analysis with Microwave Dielectric Spectroscopy

Probing biological materials with electromagnetic waves, which has been investigated for decades [1]-[6], involves characterizing the sample with its dielectric properties that are frequency dependent. Dielectric spectroscopy is performed by placing a high-frequency circuit close to the biological species under study. Passing through the biological medium, the electric properties of the biological elements modify the electromagnetic field. The complex permittivity of the medium under test may, therefore, be extracted and provides a dielectric signature of the sample.

[1]  J. Mateu,et al.  Broadband Permittivity of Liquids Extracted from Transmission Line Measurements of Microfluidic Channels , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[2]  R. Weigel,et al.  A multiband 2-port VNA for biomedical applications based on two six-port-junctions , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[3]  David Dubuc,et al.  Microwave dielectric bio-sensing for precise and repetitive living cells suspension analysis , 2013, 2013 European Microwave Conference.

[4]  F. Barnes,et al.  Handbook of biological effects of electromagnetic fields , 2007 .

[5]  David Djajaputra,et al.  RF / Microwave Interaction with Biological Tissues , 2006 .

[6]  N. Nikolova Microwave Imaging for Breast Cancer , 2011, IEEE Microwave Magazine.

[7]  Arif Ghafoor,et al.  State of the Art in Information Extraction and Quantitative Analysis for Multimodality Biomolecular Imaging , 2008, Proceedings of the IEEE.

[8]  M. Samet,et al.  Parametric study on the dielectric properties of biological tissues , 2015, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).

[9]  Susan Rae Smith-Baish,et al.  The dielectric properties of tissues , 1991 .

[10]  Michael D. Janezic,et al.  Quantitative Permittivity Measurements of Nanoliter Liquid Volumes in Microfluidic Channels to 40 GHz , 2010, IEEE Transactions on Instrumentation and Measurement.

[11]  David Dubuc,et al.  Microwave dielectric spectroscopy of cell membrane permeabilization with saponin on human B lymphoma cells , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[12]  Wei-Hua Huang,et al.  Recent developments in single-cell analysis , 2004 .

[13]  Steven S. Saliterman,et al.  Fundamentals of bioMEMS and medical microdevices , 2006 .

[14]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[15]  Ann P O'Rourke,et al.  Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe , 2007, Physics in medicine and biology.

[16]  K Sunley,et al.  Microwave frequency sensor for detection of biological cells in microfluidic channels. , 2009, Biomicrofluidics.

[17]  M. Lindstrom,et al.  A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries , 2007, Physics in medicine and biology.

[18]  Helene Andersson-Svahn,et al.  Overview of single-cell analyses: microdevices and applications. , 2010, Lab on a chip.

[19]  Kamran Entesari,et al.  A 0.62–10GHz CMOS dielectric spectroscopy system for chemical/biological material characterization , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[20]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[21]  Ali M. Niknejad,et al.  A 6.5/17.5-GHz dual-channel interferometer-based capacitive Sensor in 65-nm CMOS for high-speed flow cytometry , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[22]  David Dubuc,et al.  Recent Advances in Microwave-Based Dielectric Spectroscopy at the Cellular Level for Cancer Investigations , 2013, IEEE Transactions on Microwave Theory and Techniques.

[23]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[24]  Luke P. Lee,et al.  Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. , 2005, Biotechnology and bioengineering.

[25]  D. Dubuc,et al.  Accurate Nanoliter Liquid Characterization Up to 40 GHz for Biomedical Applications: Toward Noninvasive Living Cells Monitoring , 2012, IEEE Transactions on Microwave Theory and Techniques.

[26]  Dietmar Kissinger,et al.  Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[27]  Urban Seger,et al.  Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. , 2004, Lab on a chip.

[28]  Jun Wang,et al.  Recent advances in electric analysis of cells in microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[29]  Hywel Morgan,et al.  Single-cell microfluidic impedance cytometry: a review , 2010 .

[30]  D. Holmes,et al.  Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. , 2010, Analytical chemistry.

[31]  S. Mashimo,et al.  The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L-ascorbic acid , 1992 .

[32]  Dimitris Pavlidis,et al.  High frequency wideband permittivity measurements of biological substances using coplanar waveguides and application to cell suspensions , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[33]  Gerald J. Wilmink,et al.  Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation , 2011 .

[34]  A. Han,et al.  Whole cell electrical impedance spectroscopy for studying ion channel activity , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[35]  H. P. Schwan,et al.  Analysis of Dielectric Data: Experience Gained with Biological Materials , 1985, IEEE Transactions on Electrical Insulation.

[36]  Sverre Grimnes,et al.  Bioimpedance and Bioelectricity Basics , 2000 .

[37]  T. Fujii,et al.  Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering , 2009, IEEE Transactions on Microwave Theory and Techniques.

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  M. R. Freeman,et al.  A microwave interferometric system for simultaneous actuation and detection of single biological cells. , 2009, Lab on a chip.

[40]  Pierre Blondy,et al.  Label free biosensors for human cell characterization using radio and microwave frequencies , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[41]  S S Stuchly,et al.  Microwave coplanar sensors for dielectric measurements , 1998 .

[42]  Elise C. Fear,et al.  Microwave breast cancer detection , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[43]  L. Sha,et al.  A review of dielectric properties of normal and malignant breast tissue , 2002, Proceedings IEEE SoutheastCon 2002 (Cat. No.02CH37283).

[44]  Christian H. Reccius,et al.  Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. , 2009, Lab on a chip.

[45]  Paul M. Meaney,et al.  Microwaves for breast cancer detection , 2003 .

[46]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[47]  S. Quake,et al.  Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat , 2005, Science.

[48]  Udo Kaatze,et al.  Molecular Dynamics of Carbohydrate Aqueous Solutions. Dielectric Relaxation as a Function of Glucose and Fructose Concentration , 2001 .

[49]  B. Bocquet,et al.  Investigation on living cells with a THz BioMEMS , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[50]  Lydia L. Sohn,et al.  Dielectric spectroscopy for bioanalysis: From 40 Hz to 26.5 GHz in a microfabricated wave guide , 2001 .

[51]  Seung Choi,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? J ? ? J ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2022 .

[52]  Yang Yang,et al.  Distinguishing the viability of a single yeast cell with an ultra-sensitive radio frequency sensor. , 2010, Lab on a chip.

[53]  G. Plopper,et al.  Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy. , 2007, Biosensors & bioelectronics.

[54]  Dino Di Carlo,et al.  Dynamic single-cell analysis for quantitative biology. , 2006, Analytical chemistry.

[55]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems ii. The Capacity of a Suspension of Conducting Spheroids Surrounded by a Non-Conducting Membrane for a Current of Low Frequency , 1925 .

[56]  D. Dubuc,et al.  Microwave biosensor dedicated to the dielectric spectroscopy of a single alive biological cell in its culture medium , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).