Exploiting Symmetries to Construct Efficient MCMC Algorithms With an Application to SLAM

The Metropolis-Hastings (MH) algorithm is a flexible method to generate samples from a target distribution, a key problem in probabilistic inference. In this paper we propose a variation of the MH algorithm based on group moves, where the next state is obtained by first choosing a random transformation of the state space and then applying this transformation to the current state. This adds much-needed flexibility to the “textbook” MH algorithm where all measures involved must be given in terms of densities with respect to a common reference measure. Under mild conditions, our main result extends the acceptance probability formula of the textbook algorithm to MH algorithms with group moves. We work out how the new algorithms can be used to exploit a problem’s natural symmetries and apply the technique to the simultaneous localization and mapping (SLAM) problem, obtaining the first fully rigorous justification of a previous MCMCbased SLAM method. New experimental results comparing our method to existing state-of-theart specialized methods on a standard range-only SLAM benchmark problem validate the strength of the approach.

[1]  A. Haar Der Massbegriff in der Theorie der Kontinuierlichen Gruppen , 1933 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  P. Diaconis Group representations in probability and statistics , 1988 .

[5]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[6]  M. L. Eaton Group invariance applications in statistics , 1989 .

[7]  R. Wijsman Invariant measures on groups and their use in statistics , 1990 .

[8]  Peter M. Fenwick,et al.  A new data structure for cumulative frequency tables , 1994, Softw. Pract. Exp..

[9]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[10]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[11]  Joseph T. Chang,et al.  Conditioning as disintegration , 1997 .

[12]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[13]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[14]  A. U.S.,et al.  Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation , 2000 .

[15]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[16]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[17]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[18]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[19]  Yang Xiang,et al.  PROBABILISTIC REASONING IN MULTIAGENT SYSTEMS: A GRAPHICAL MODELS APPROACH, by Yang Xiang, Cambridge University Press, Cambridge, 2002, xii + 294 pp., ISBN 0-521-81308-5 (Hardback, £45.00). , 2002, Robotica.

[20]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[21]  Daniel Zelterman,et al.  Bayesian Artificial Intelligence , 2005, Technometrics.

[22]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[23]  Tony Jebara,et al.  Multi-object tracking with representations of the symmetric group , 2007, AISTATS.

[24]  I. Kondor,et al.  Group theoretical methods in machine learning , 2008 .

[25]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[26]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[27]  Joseph A. Djugash,et al.  Geolocation with Range: Robustness, Efficiency and Scalability , 2010 .

[28]  András György,et al.  A Markov-Chain Monte Carlo Approach to Simultaneous Localization and Mapping , 2010, AISTATS.

[29]  Alan K. Mackworth,et al.  Artificial Intelligence - Foundations of Computational Agents , 2010 .

[30]  L Poole David,et al.  Artificial Intelligence: Foundations of Computational Agents , 2010 .

[31]  Walter Dempsey,et al.  Multiresolution analysis on the symmetric group , 2012, NIPS.

[32]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[33]  Simon J. D. Prince,et al.  Computer Vision: Models, Learning, and Inference , 2012 .

[34]  Mathias Niepert,et al.  Markov Chains on Orbits of Permutation Groups , 2012, UAI.

[35]  Mathias Niepert Lifted Probabilistic Inference: An MCMC Perspective , 2012, StarAI@UAI.

[36]  Byron Boots,et al.  A Spectral Learning Approach to Range-Only SLAM , 2012, ICML.

[37]  Jorge Dias,et al.  Probabilistic Approaches to Robotic Perception , 2014, Springer Tracts in Advanced Robotics.

[38]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.