Accelerated sequence divergence of conserved genomic elements in Drosophila melanogaster.

Recent genomic sequencing of 10 additional Drosophila genomes provides a rich resource for comparative genomics analyses aimed at understanding the similarities and differences between species and between Drosophila and mammals. Using a phylogenetic approach, we identified 64 genomic elements that have been highly conserved over most of the Drosophila tree, but that have experienced a recent burst of evolution along the Drosophila melanogaster lineage. Compared to similarly defined elements in humans, these regions of rapid lineage-specific evolution in Drosophila differ dramatically in location, mechanism of evolution, and functional properties of associated genes. Notably, the majority reside in protein-coding regions and primarily result from rapid adaptive synonymous site evolution. In fact, adaptive evolution appears to be driving substitutions to unpreferred codons. Our analysis also highlights interesting noncoding genomic regions, such as regulatory regions in the gene gooseberry-neuro and a putative novel miRNA.

[1]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.

[2]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[3]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  David Haussler,et al.  Human Genome Ultraconserved Elements Are Ultraselected , 2007, Science.

[5]  Adam Eyre-Walker,et al.  Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila. , 2004, Genome research.

[6]  J. Hey,et al.  The effects of mutation and natural selection on codon bias in the genes of Drosophila. , 1994, Genetics.

[7]  M. Hubisz,et al.  Patterns of mutation and selection at synonymous sites in Drosophila. , 2007, Molecular biology and evolution.

[8]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[9]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[10]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[11]  M. Hubisz,et al.  Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila. , 2006, Molecular biology and evolution.

[12]  Casey M. Bergman,et al.  Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster , 2005, Bioinform..

[13]  Laurent Excoffier,et al.  Conserved noncoding sequences are selectively constrained and not mutation cold spots , 2006, Nature Genetics.

[14]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[15]  Axel Visel,et al.  Deletion of Ultraconserved Elements Yields Viable Mice , 2007, PLoS biology.

[16]  H. Akashi Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. , 1994, Genetics.

[17]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[18]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[19]  M. Nei Molecular Evolutionary Genetics , 1987 .

[20]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[21]  H. Akashi,et al.  Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. , 1995, Genetics.

[22]  N. Patel,et al.  Analysis of the gooseberry locus in Drosophila embryos: gooseberry determines the cuticular pattern and activates gooseberry neuro. , 1993, Development.

[23]  B. Charlesworth,et al.  Evolution on the X chromosome: unusual patterns and processes , 2006, Nature Reviews Genetics.

[24]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[25]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[26]  Colin N. Dewey,et al.  Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans , 2007, PLoS biology.

[27]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[28]  William Stafford Noble,et al.  Widely distributed noncoding purifying selection in the human genome , 2007, Proceedings of the National Academy of Sciences.

[29]  M. Noll,et al.  Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo. , 1994, The EMBO journal.

[30]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[31]  D. Haussler,et al.  Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. , 2003, Molecular biology and evolution.

[32]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[33]  H. Akashi,et al.  Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. , 1996, Genetics.

[34]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[35]  C. Wilke,et al.  Why highly expressed proteins evolve slowly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. C. Rutledge,et al.  Genetic Data Analysis , 1991 .

[37]  M. Noll,et al.  Separable regulatory elements mediate the establishment and maintenance of cell states by the Drosophila segment‐polarity gene gooseberry. , 1993, The EMBO journal.

[38]  A. Komar,et al.  Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation , 1999, FEBS letters.

[39]  Hiroshi Akashi,et al.  Translational selection and yeast proteome evolution. , 2003, Genetics.

[40]  H. Akashi,et al.  Gene expression and molecular evolution. , 2001, Current opinion in genetics & development.

[41]  D. Haussler,et al.  An RNA gene expressed during cortical development evolved rapidly in humans , 2006, Nature.

[42]  Sònia Casillas,et al.  Purifying selection maintains highly conserved noncoding sequences in Drosophila. , 2007, Molecular biology and evolution.

[43]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[44]  Adam Eyre-Walker,et al.  The genomic rate of adaptive evolution. , 2006, Trends in ecology & evolution.

[45]  C. Wilke,et al.  A single determinant dominates the rate of yeast protein evolution. , 2006, Molecular biology and evolution.

[46]  W. Konigsberg,et al.  Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Noll,et al.  Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions , 1994, Nature.

[48]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[49]  Su Yeon Kim,et al.  Adaptive Evolution of Conserved Noncoding Elements in Mammals , 2007, PLoS genetics.

[50]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[51]  Piyush Goel,et al.  Ancestral Inference and the Study of Codon Bias Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila melanogaster Subgroup , 2007, PloS one.

[52]  Wolfgang Stephan,et al.  In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. , 2003, Genetics.

[53]  M Vingron,et al.  An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome , 2003, Genome Biology.

[54]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[55]  Charles H. Langley,et al.  An examination of the constancy of the rate of molecular evolution , 2005, Journal of Molecular Evolution.

[56]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[57]  G. Lefevre photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands , 1976 .

[58]  Lippincott-Schwartz,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S8 Table S1 Movies S1 to S3 a " Silent " Polymorphism in the Mdr1 Gene Changes Substrate Specificity Corrected 30 November 2007; See Last Page , 2022 .

[59]  J. Parker,et al.  Errors and alternatives in reading the universal genetic code. , 1989, Microbiological reviews.

[60]  C. Ponting,et al.  Variable Strength of Translational Selection Among 12 Drosophila Species , 2007, Genetics.

[61]  R. Hudson,et al.  A test of neutral molecular evolution based on nucleotide data. , 1987, Genetics.

[62]  C. Kurland,et al.  Codon preferences in free-living microorganisms. , 1990, Microbiological reviews.

[63]  A. Brown,et al.  The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. , 1987, Journal of molecular biology.

[64]  T. Ohta,et al.  On the constancy of the evolutionary rate of cistrons , 2005, Journal of Molecular Evolution.

[65]  J. Galagan,et al.  Positive selection for unpreferred codon usage in eukaryotic genomes , 2007, BMC Evolutionary Biology.

[66]  Justin C. Fay,et al.  DNA Variability and Divergence at the Notch Locus in Drosophila melanogaster and D. simulans: A Case of Accelerated Synonymous Site Divergence , 2004, Genetics.

[67]  Adam Eyre-Walker,et al.  Adaptive protein evolution in Drosophila , 2002, Nature.

[68]  Kevin Thornton,et al.  libsequence: a C++ class library for evolutionary genetic analysis , 2003, Bioinform..

[69]  J. Gillespie The causes of molecular evolution , 1991 .

[70]  Xavier Messeguer,et al.  DnaSP, DNA polymorphism analyses by the coalescent and other methods , 2003, Bioinform..

[71]  Saverio Vicario,et al.  Codon usage in twelve species of Drosophila , 2007, BMC Evolutionary Biology.

[72]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[73]  Long Li,et al.  REDfly: a Regulatory Element Database for Drosophila , 2006, Bioinform..

[74]  M. Noll,et al.  Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. , 1987, Genes & development.

[75]  P Argos,et al.  Ribosome‐mediated translational pause and protein domain organization , 1996, Protein science : a publication of the Protein Society.