ReAct: Online Multimodal Embedding for Recency-Aware Spatiotemporal Activity Modeling

Spatiotemporalactivity modeling is an important task for applications like tour recommendation and place search. The recently developed geographical topic models have demonstrated compelling results in using geo-tagged social media (GTSM) for spatiotemporal activity modeling. Nevertheless, they all operate in batch and cannot dynamically accommodate the latest information in the GTSM stream to reveal up-to-date spatiotemporal activities. We propose ReAct, a method that processes continuous GTSM streams and obtains recency-aware spatiotemporal activity models on the fly. Distinguished from existing topic-based methods, ReAct embeds all the regions, hours, and keywords into the same latent space to capture their correlations. To generate high-quality embeddings, it adopts a novel semi-supervised multimodal embedding paradigm that leverages the activity category information to guide the embedding process. Furthermore, as new records arrive continuously, it employs strategies to effectively incorporate the new information while preserving the knowledge encoded in previous embeddings. Our experiments on the geo-tagged tweet streams in two major cities have shown that ReAct significantly outperforms existing methods for location and activity retrieval tasks.

[1]  P. Waddell UrbanSim: Modeling Urban Development for Land Use, Transportation, and Environmental Planning , 2002 .

[2]  Qiaozhu Mei,et al.  PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks , 2015, KDD.

[3]  Daniel Barbará,et al.  On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[4]  Wei Zhang,et al.  STREAMCUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[5]  Anthony K. H. Tung,et al.  Trendspedia: An Internet observatory for analyzing and visualizing the evolving web , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[8]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[9]  Felix Kling,et al.  When a city tells a story: urban topic analysis , 2012, SIGSPATIAL/GIS.

[10]  Nadia Magnenat-Thalmann,et al.  Who, where, when and what: discover spatio-temporal topics for twitter users , 2013, KDD.

[11]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[12]  Wei Zhang,et al.  PRED: Periodic Region Detection for Mobility Modeling of Social Media Users , 2017, WSDM.

[13]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[14]  Shaowen Wang,et al.  Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning , 2017, WWW.

[15]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[16]  Brian D. Davison,et al.  Tracking trends: incorporating term volume into temporal topic models , 2011, KDD.

[17]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[18]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[19]  Sergej Sizov,et al.  GeoFolk: latent spatial semantics in web 2.0 social media , 2010, WSDM '10.

[20]  Eric Horvitz,et al.  Eyewitness: identifying local events via space-time signals in twitter feeds , 2015, SIGSPATIAL/GIS.

[21]  Michael Gertz,et al.  EvenTweet: Online Localized Event Detection from Twitter , 2013, Proc. VLDB Endow..

[22]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[23]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[24]  Luming Zhang,et al.  GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media , 2016, KDD.

[25]  Steffen Staab,et al.  Detecting non-gaussian geographical topics in tagged photo collections , 2014, WSDM.

[26]  Jiawei Han,et al.  Geographical topic discovery and comparison , 2011, WWW.

[27]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[28]  Alexei Pozdnoukhov,et al.  Best Paper Award , 2011 .

[29]  Shaowen Wang,et al.  GeoBurst: Real-Time Local Event Detection in Geo-Tagged Tweet Streams , 2016, SIGIR.

[30]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[31]  Kazutoshi Sumiya,et al.  Discovery of unusual regional social activities using geo-tagged microblogs , 2011, World Wide Web.

[32]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[33]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[34]  Ke Zhang,et al.  On the importance of temporal dynamics in modeling urban activity , 2013, UrbComp '13.

[35]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[36]  Alexander J. Smola,et al.  Discovering geographical topics in the twitter stream , 2012, WWW.

[37]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[38]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[39]  Tat-Seng Chua,et al.  Fast Matrix Factorization for Online Recommendation with Implicit Feedback , 2016, SIGIR.

[40]  Deepayan Chakrabarti,et al.  Evolutionary clustering , 2006, KDD '06.

[41]  ChengXiang Zhai,et al.  Discovering evolutionary theme patterns from text: an exploration of temporal text mining , 2005, KDD '05.