Qubit-efficient entanglement spectroscopy using qubit resets

One strategy to fit larger problems on NISQ devices is to exploit a tradeoff between circuit width and circuit depth. Unfortunately, this tradeoff still limits the size of tractable problems since the increased depth is often not realizable before noise dominates. Here, we develop qubit-efficient quantum algorithms for entanglement spectroscopy which avoid this tradeoff. In particular, we develop algorithms for computing the trace of the n-th power of the density operator of a quantum system, Tr(ρn), (related to the Rényi entropy of order n) that use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise, thus enabling spectroscopy of larger quantum systems on NISQ devices. Our algorithms, which require a number of qubits independent of n, are variants of previous algorithms with width proportional to n, an asymptotic difference. The crucial ingredient in these new algorithms is the ability to measure and reinitialize subsets of qubits in the course of the computation, allowing us to reuse qubits and increase the circuit depth without suffering the usual noisy consequences. We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets. This tool helps explain the noise-resilience of our qubit-efficient algorithms and should aid in designing future algorithms. We perform numerical simulations to compare our algorithms to the original variants and show they perform similarly when subjected to noise. Additionally, we experimentally implement one of our qubit-efficient algorithms on the Honeywell System Model H0, estimating Tr(ρn) for larger n than possible with previous algorithms.

[1]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[2]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[3]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[4]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[5]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[6]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[7]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[8]  Daniel J. Egger,et al.  Pulsed Reset Protocol for Fixed-Frequency Superconducting Qubits , 2018, Physical Review Applied.

[9]  E. Prodan,et al.  Entanglement Spectrum of a Disordered Topological Chern Insulator , 2010 .

[10]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[11]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[12]  P. Zoller,et al.  Quantum simulation and spectroscopy of entanglement Hamiltonians , 2017, Nature Physics.

[13]  M. Hermanns Entanglement in topological systems , 2017, 1702.01525.

[14]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[15]  M S Allman,et al.  Demonstration of the trapped-ion quantum CCD computer architecture. , 2021, Nature.

[16]  Michael D. Westmoreland,et al.  Isolation and Information Flow in Quantum Dynamics , 2012 .

[17]  A. Lefevre,et al.  Entanglement spectrum in one-dimensional systems , 2008, 0806.3059.

[18]  Quantum Digital Signatures , 2001, quant-ph/0105032.

[19]  Min-Hsiu Hsieh,et al.  Quantum algorithm for estimating α -Renyi entropies of quantum states , 2019, Physical Review A.

[20]  C. Figgatt,et al.  Holographic quantum algorithms for simulating correlated spin systems , 2020, Physical Review Research.

[21]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[22]  A. Blais,et al.  Fast and Unconditional All-Microwave Reset of a Superconducting Qubit. , 2018, Physical review letters.

[23]  Norbert M. Linke,et al.  Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer , 2017, Physical Review A.

[24]  A Sanpera,et al.  Entanglement spectrum, critical exponents, and order parameters in quantum spin chains. , 2011, Physical review letters.

[25]  Elham Kashefi,et al.  Parallelizing quantum circuits , 2007, Theor. Comput. Sci..

[26]  C. Figgatt,et al.  Demonstration of the QCCD trapped-ion quantum computer architecture , 2020, 2003.01293.

[27]  Robert Wille,et al.  Reducing the Depth of Quantum Circuits Using Additional Circuit Lines , 2013, RC.

[28]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[29]  Recycling qubits in near-term quantum computers , 2020, 2012.01676.

[30]  Benjamin Schumacher,et al.  Locality and Information Transfer in Quantum Operations , 2005, Quantum Inf. Process..

[31]  M Mirrahimi,et al.  Demonstrating a driven reset protocol for a superconducting qubit. , 2012, Physical review letters.

[32]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[33]  Todd A. Bruni Measuring polynomial functions of states , 2004, Quantum Inf. Comput..

[34]  P. Zoller,et al.  Entanglement Hamiltonian tomography in quantum simulation , 2020, Nature Physics.

[35]  Yue Sun,et al.  Quantum Simulation of Galton Machines Using Mid-Circuit Measurement and Reuse. , 2020 .

[36]  B. Swingle,et al.  Geometric proof of the equality between entanglement and edge spectra , 2011, 1109.1283.

[37]  I. Klich,et al.  Bipartite fluctuations as a probe of many-body entanglement , 2011, 1109.1001.

[38]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[39]  L. Fidkowski Entanglement spectrum of topological insulators and superconductors. , 2009, Physical review letters.

[40]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[41]  Maris Ozols,et al.  Simulating Large Quantum Circuits on a Small Quantum Computer. , 2019, Physical review letters.

[42]  Pedro Chamorro-Posada,et al.  swap test and Hong-Ou-Mandel effect are equivalent , 2013, 1303.6814.

[43]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[44]  Patrick J. Coles,et al.  Entanglement spectroscopy with a depth-two quantum circuit , 2018, Journal of Physics A: Mathematical and Theoretical.

[45]  Ryan O'Donnell,et al.  Quantum state certification , 2017, STOC.

[46]  J. Ignacio Cirac,et al.  Analogue quantum chemistry simulation , 2018, Nature.

[47]  Matthias Troyer,et al.  Entanglement spectroscopy on a quantum computer , 2017, 1707.07658.

[48]  Lei Wang,et al.  Variational quantum eigensolver with fewer qubits , 2019, Physical Review Research.

[49]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[50]  E. Prodan,et al.  Entanglement spectrum of a disordered topological Chern insulator. , 2010, Physical review letters.

[51]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[52]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[53]  Luke C. G. Govia,et al.  Real-time processing of stabilizer measurements in a bit-flip code , 2020 .

[54]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[55]  Matthew Coudron,et al.  Computations with greater quantum depth are strictly more powerful (relative to an oracle) , 2020, STOC.

[56]  T. Spiller,et al.  The controlled SWAP test for determining quantum entanglement , 2020, Quantum Science and Technology.

[57]  Kai-Min Chung,et al.  On the need for large Quantum depth , 2019, STOC.

[58]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[59]  Spencer D. Fallek,et al.  Real-time decoding of stabilizer measurements in a bit-flip code , 2019, 1911.12280.