An efficient algorithm for packing cuts and (2, 3)-metrics in a planar graph with three holes

We consider a planar graph $G$ in which the edges have nonnegative integer lengths such that the length of every cycle of $G$ is even, and three faces are distinguished, called holes in $G$. It is known that there exists a packing of cuts and (2,3)-metrics with nonnegative integer weights in $G$ which realizes the distances within each hole. We develop a strongly polynomial purely combinatorial algorithm to find such a packing.