Combinatorial Vector Field Topology in 3 Dimensions

In this paper, we present two combinatorial methods to process 3-D steady vector fields, which both use graph algorithms to extract features from the underlying vector field. Combinatorial approaches are known to be less sensitive to noise than extracting individual trajectories. Both of the methods are a straightforward extension of an existing 2-D technique to 3-D fields. We observed that the first technique can generate overly coarse results and therefore we present a second method that works using the same concepts but produces more detailed results. We evaluate our method on a CFD-simulation of a gas furnace chamber. Finally, we discuss several possibilities for categorizing the invariant sets respective to the flow.

[1]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[2]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[3]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[4]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[5]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[6]  R. Forman Combinatorial vector fields and dynamical systems , 1998 .

[7]  Konstantin Mischaikow,et al.  The Conley index theory: A brief introduction , 1999 .

[8]  H. Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[9]  Marian Mrozek,et al.  Set arithmetic and the enclosing problem in dynamics , 2000 .

[10]  G. Haller Distinguished material surfaces and coherent structures in three-dimensional fluid flows , 2001 .

[11]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[12]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[13]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[14]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[15]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[16]  坂上 貴之 書評 Computational Homology , 2005 .

[17]  Gordon Erlebacher,et al.  Overview of Flow Visualization , 2005, The Visualization Handbook.

[18]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[19]  William D. Kalies,et al.  A computational approach to conley's decomposition theorem , 2006 .

[20]  K. Mischaikow,et al.  Polygonal approximation of flows , 2007 .

[21]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Konstantin Mischaikow,et al.  Efficient Morse Decompositions of Vector Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Filip Sadlo,et al.  Topologically relevant stream surfaces for flow visualization , 2009, SCCG.

[24]  Filip Sadlo,et al.  Flow Topology Beyond Skeletons: Visualization of Features in Recirculating Flow , 2009, Topology-Based Methods in Visualization II.

[25]  Xavier Tricoche,et al.  Analysis of Recurrent Patterns in Toroidal Magnetic Fields , 2010, IEEE Transactions on Visualization and Computer Graphics.

[26]  Ingrid Hotz,et al.  Combinatorial 2D Vector Field Topology Extraction and Simplification , 2011, Topological Methods in Data Analysis and Visualization.

[27]  R. Ho Algebraic Topology , 2022 .