Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

[1]  M. Bilad,et al.  Critical Evaluation of the Determination Methods for Transparent Exopolymer Particles, Agents of Membrane Fouling , 2015 .

[2]  M. Bilad,et al.  Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). , 2014, Bioresource technology.

[3]  J. Pruvost,et al.  The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. , 2013, Bioresource technology.

[4]  M. Bilad,et al.  Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration. , 2013, Bioresource technology.

[5]  G. Amy,et al.  Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: a membrane treatment perspective , 2013 .

[6]  Kazuo Yamamoto,et al.  Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. , 2012, Bioresource technology.

[7]  J. Pruvost,et al.  Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. , 2012, Bioresource technology.

[8]  Keat-Teong Lee,et al.  Microalgae biofuels: A critical review of issues, problems and the way forward. , 2012, Biotechnology advances.

[9]  Amanda Lea-Langton,et al.  Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process , 2012 .

[10]  D. Vandamme,et al.  Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. , 2012, Bioresource technology.

[11]  R. Sims,et al.  Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. , 2011, Biotechnology advances.

[12]  M. Rai,et al.  Effect of Nitrogen on Growth and Lipid Content of Chlorella pyrenoidosa , 2011 .

[13]  Anja Drews,et al.  Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures , 2010 .

[14]  Chris J. Hulatt,et al.  Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion? , 2010, Bioresource technology.

[15]  B. Jefferson,et al.  The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. , 2010, Water research.

[16]  R. Lovitt,et al.  Placing microalgae on the biofuels priority list: a review of the technological challenges , 2010, Journal of The Royal Society Interface.

[17]  D. Walker,et al.  Biofuels, facts, fantasy, and feasibility , 2009, Journal of Applied Phycology.

[18]  R. Wijffels,et al.  Growth inhibition of Monodus subterraneus by free fatty acids. , 2008, Biotechnology and bioengineering.

[19]  B. Jefferson,et al.  Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. , 2008, Water research.

[20]  L. Gordon,et al.  The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells , 2007 .

[21]  Yin-Ru Chiang,et al.  Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. , 2006, Aquatic toxicology.

[22]  O. Fatibello‐Filho,et al.  A rapid spectrophotometric method for the determination of transparent exopolymer particles (TEP) in freshwater. , 2004, Talanta.

[23]  Mario R Tredici,et al.  Growth medium recycling in Nannochloropsis sp. mass cultivation. , 2003, Biomolecular engineering.

[24]  A. Richmond,et al.  Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. , 2003, Biomolecular engineering.

[25]  J. Doucha,et al.  Influence of the nutrient solution recycling on the productivity of Scenedesmus obliquus, utilization of nutrients and water in outdoor cultures , 1996 .

[26]  Alice L. Alldredge,et al.  A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) , 1995 .

[27]  B. Palsson,et al.  Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities , 1995 .

[28]  S. Myklestad Release of extracellular products by phytoplankton with special emphasis on polysaccharides , 1995 .

[29]  B. Palsson,et al.  High‐density photoautotrophic algal cultures: Design, construction, and operation of a novel photobioreactor system , 1991, Biotechnology and bioengineering.

[30]  A. Sukenik,et al.  Algal autoflocculation—verification and proposed mechanism , 1984, Biotechnology and bioengineering.

[31]  David E. Comings,et al.  Principles and techniques of electron microscopy: Biological applications , 1971 .

[32]  S. Mandal,et al.  Green microalga Chlorella vulgaris as a potential feedstock for biodiesel , 2012 .

[33]  A. Shilton,et al.  Wastewater treatment high rate algal ponds for biofuel production. , 2011, Bioresource technology.

[34]  F. Chen,et al.  Triphenyltin induced growth inhibition and antioxidative responses in the green microalga Scenedesmus quadricauda , 2011, Ecotoxicology.