Local probing of the vortex–antivortex dynamics in superconductor/ferromagnet hybrid structures

In-plane ferromagnetic bars, densely packed in a linear array underneath a superconducting bridge, create two types of vortex chains of opposite polarity inside the superconductor. In this work we investigate both experimentally and theoretically the dynamics of these vortex chains as a function of an external magnetic field for two different arrangements of magnetic moments, namely parallel and antiparallel. The theoretical approach, based on the time-dependent Ginzburg–Landau formalism, confirms previously proposed empirical models implemented to describe the basic properties of these hybrid systems. In addition, local transport measurements allow us to probe the dynamics of individual vortex channels as a function of the applied magnetic field. These measurements evidence a drastic reduction of the dissipation in the channel populated with vortices having opposite polarity to the applied field.

[1]  C. C. D. S. Silva,et al.  Dynamics of vortex-antivortex matter in nanostructured ferromagnet-superconductor bilayers , 2009 .

[2]  J. Devreese,et al.  Vortex-antivortex pair generation by an in-plane magnetic dipole on a superconducting film , 2009 .

[3]  V. Metlushko,et al.  Magnetically controlled superconducting weak links , 2009 .

[4]  B. Ilic,et al.  Erratum: “Switchable magnetic dipole induced guided vortex motion” [Appl. Phys. Lett.93, 022507 (2008)] , 2009 .

[5]  V. Moshchalkov,et al.  Pinning centers produced by magnetic microstructures , 2009 .

[6]  V. V. Moshchalkov,et al.  Nucleation of superconductivity and vortex matter in superconductor–ferromagnet hybrids , 2009, 0902.1630.

[7]  B. Ilic,et al.  Self-organized mode-locking effect in superconductor/ferromagnet hybrids , 2008, 0811.0798.

[8]  I. Schuller,et al.  Superconducting vortex pinning with artificial magnetic nanostructures , 2008 .

[9]  B. Ilic,et al.  Switchable magnetic dipole induced guided vortex motion , 2008, 0805.2857.

[10]  V. Moshchalkov,et al.  Magnetic flux patterns in superconductors deposited on a lattice of magnetic dots: A magneto-optical imaging study , 2008 .

[11]  C. Marrows,et al.  Competing symmetries and broken bonds in superconducting vortex-antivortex molecular crystals. , 2007, Physical review letters.

[12]  B. Ilic,et al.  Dipole-induced vortex ratchets in superconducting films with arrays of micromagnets. , 2007, Physical review letters.

[13]  F. Peeters,et al.  Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles , 2006 .

[14]  F. Peeters,et al.  Mesoscopic field and current compensator based on a hybrid superconductor-ferromagnet structure. , 2005, Physical review letters.

[15]  V. Moshchalkov,et al.  Vortex-antivortex dynamics and field-polarity-dependent flux creep in hybrid superconductor/ferromagnet nanostructures , 2005, cond-mat/0508459.

[16]  G. Carneiro Tunable ratchet effects for vortices pinned by periodic magnetic dipole arrays , 2005, cond-mat/0508318.

[17]  A. Buzdin,et al.  Proximity effect in superconductor-ferromagnet heterostructures , 2005, cond-mat/0505583.

[18]  F. Peeters,et al.  Vortex-antivortex nucleation in magnetically nanotextured superconductors: magnetic-field-driven and thermal scenarios. , 2005, Physical review letters.

[19]  I. Lyuksyutov,et al.  Ferromagnet–superconductor hybrids , 2004, cond-mat/0409137.

[20]  F. Peeters,et al.  Vortex-Antivortex Lattices in Superconducting Films with Magnetic Pinning Arrays , 2004 .

[21]  R. Wördenweber,et al.  Guidance of vortices and the vortex ratchet effect in high-T c superconducting thin films obtained by arrangement of antidots , 2004 .

[22]  V. Moshchalkov,et al.  Nanoengineered magnetic-field-induced superconductivity. , 2002, Physical review letters.

[23]  V. Vinokur,et al.  Mode locking of vortex matter driven through mesoscopic channels. , 2002, Physical review letters.

[24]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[25]  Enomoto,et al.  Effects of the surface boundary on the magnetization process in type-II superconductors. , 1993, Physical review. B, Condensed matter.

[26]  Enomoto,et al.  Computer simulations of dynamics of flux lines in type-II superconductors. , 1991, Physical review. B, Condensed matter.

[27]  M. Kulić,et al.  Coexistence of superconductivity and magnetism theoretical predictions and experimental results , 1985 .

[28]  C. Tsuei,et al.  Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films , 1983 .

[29]  R. Watts-tobin,et al.  Theory of dissipative current-carrying states in superconducting filaments , 1978 .

[30]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[31]  A. Fiory Quantum Interference Effects of a Moving Vortex Lattice in Al Films , 1971 .