A simple and local method for computing quasi-conformal map on 3D surfaces

Quasi-conformal maps have bounded conformal distortion, and are the natural extension of the conformal maps. The existing techniques to compute the quasi-conformal map require a global coordinate system; thus, they are limited to models of simple topological types, such as genus-0 or 1 surfaces, for which one can obtain the global coordinates by the global parameterization. This paper presents a simple yet effective technique for computing a quasi-conformal map on surfaces of non-trivial topology. Our method extends the quasi-conformal iteration method (Lui et al., 2012) [8] from the complex plane to the manifold setting. It requires neither numerical solver nor the global coordinate system, thus, is easy to implement. Moreover, thanks to its simple and parallel structure, our method is well suited for parallel computing. Experimental results on 3D models of various topological types demonstrate the efficacy of our technique.

[1]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[2]  Shi-Qing Xin,et al.  Improving Chen and Han's algorithm on the discrete geodesic problem , 2009, TOGS.

[3]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[4]  Shi-Qing Xin,et al.  Interactive Applications for Sketch-Based Editable Polycube Map , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[6]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[7]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[8]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[9]  Wei Zeng,et al.  Surface Quasi-Conformal Mapping by Solving Beltrami Equations , 2009, IMA Conference on the Mathematics of Surfaces.

[10]  P. Daripa A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings , 1993 .

[11]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[12]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[13]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[14]  Lok Ming Lui,et al.  Teichmüller extremal mapping and its applications to landmark matching registration , 2012, ArXiv.

[15]  Lok Ming Lui,et al.  Computing quasiconformal maps using an auxiliary metric and discrete curvature flow , 2012, Numerische Mathematik.

[16]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[17]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[18]  Qian Sun,et al.  An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.