Silicon nitride laser cladding: A feasible technique to improve the biological response of zirconia

[1]  W. Zhu,et al.  3D-additive deposition of an antibacterial and osteogenic silicon nitride coating on orthopaedic titanium substrate. , 2020, Journal of the mechanical behavior of biomedical materials.

[2]  D. Botezat,et al.  Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice , 2019, Materials.

[3]  G. Pezzotti Silicon nitride: A bioceramic with a gift. , 2019, ACS applied materials & interfaces.

[4]  P. Saha,et al.  Synthesis and characterization of nickel free titanium–hydroxyapatite composite coating over Nitinol surface through in-situ laser cladding and alloying , 2019, Surface and Coatings Technology.

[5]  Sonny B. Bal,et al.  Biological response of human osteosarcoma cells to Si3N4-doped Bioglasses , 2018, Materials & Design.

[6]  N. Sugano,et al.  Mechanisms induced by transition metal contaminants and their effect on the hydrothermal stability of zirconia-containing bioceramics: an XPS study. , 2018, Physical chemistry chemical physics : PCCP.

[7]  E. Marin,et al.  Understanding Silicon Nitride’s Biological Properties: From Inert to Bioactive Ceramic , 2018, Key Engineering Materials.

[8]  M. Gezmen-Karadag,et al.  The multiple functions and mechanisms of osteopontin. , 2018, Clinical biochemistry.

[9]  J. Nyman,et al.  Assessing glycation‐mediated changes in human cortical bone with Raman spectroscopy , 2018, Journal of biophotonics.

[10]  E. Marin,et al.  Incorporating Si3 N4 into PEEK to Produce Antibacterial, Osteocondutive, and Radiolucent Spinal Implants. , 2018, Macromolecular bioscience.

[11]  Pavel E. Timchenko,et al.  Raman spectroscopy method for the evaluation of bone bioimplants made using the "Lyoplast" technology from cadaveric and in vivo resected bone tissue , 2018, Journal of Physics: Conference Series.

[12]  Wenliang Zhu,et al.  Monitoring metabolic reactions in Staphylococcus epidermidis exposed to silicon nitride using in situ time-lapse Raman spectroscopy , 2018, Journal of biomedical optics.

[13]  P. Chu,et al.  Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. , 2018, ACS applied materials & interfaces.

[14]  W. Zhu,et al.  Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated Si3N4 cervical insert. , 2017, Acta biomaterialia.

[15]  M. Arora,et al.  The Promise of Silicon: bone regeneration and increased bone density , 2017 .

[16]  Wenliang Zhu,et al.  Bioactive silicon nitride: A new therapeutic material for osteoarthropathy , 2017, Scientific Reports.

[17]  M. A. Montealegre,et al.  Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study , 2017, Journal of Materials Science.

[18]  Yi-Shiuan Liu,et al.  Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells , 2017, International journal of molecular sciences.

[19]  Wenliang Zhu,et al.  Silicon Nitride: A Synthetic Mineral for Vertebrate Biology , 2016, Scientific Reports.

[20]  Wenliang Zhu,et al.  In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces. , 2016, ACS biomaterials science & engineering.

[21]  O. Akkus,et al.  Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone's Collagen , 2016, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[22]  Shangzhi Li,et al.  Biological Silicon Stimulates Collagen Type 1 and Osteocalcin Synthesis in Human Osteoblast-Like Cells Through the BMP-2/Smad/RUNX2 Signaling Pathway , 2016, Biological Trace Element Research.

[23]  Wenliang Zhu,et al.  Silicon Nitride Bioceramics Induce Chemically Driven Lysis in Porphyromonas gingivalis. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[24]  A. Clare,et al.  Laser cladding of Inconel 625 wire for corrosion protection , 2015 .

[25]  S. Goroshin,et al.  Comparative reactivity of industrial metal powders with water for hydrogen production , 2015 .

[26]  M. Morris,et al.  Contributions of Raman spectroscopy to the understanding of bone strength. , 2015, BoneKEy reports.

[27]  T. narayanan,et al.  Deposition of zinc–zinc phosphate composite coatings on aluminium by cathodic electrochemical treatment , 2014 .

[28]  R. Collins,et al.  Dual reactor deposition of quantum confined nanocrystalline silicon , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[29]  F. Weng,et al.  Research status of laser cladding on titanium and its alloys: A review , 2014 .

[30]  A. Afzal Implantable zirconia bioceramics for bone repair and replacement: A chronological review , 2014 .

[31]  Chuen-Lin Tien,et al.  Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition. , 2012, Applied optics.

[32]  Haishan Zeng,et al.  Full range characterization of the Raman spectra of organs in a murine model. , 2011, Optics express.

[33]  K Lyons,et al.  Clinical trials in zirconia: a systematic review. , 2010, Journal of oral rehabilitation.

[34]  R. Filipiak,et al.  Fourier Transform Near Infrared Raman Spectroscopy in Studies on Connective Tissue , 2010 .

[35]  V. V. Pully From cells to bone : raman microspectroscopy of the mineralization of stromal cells , 2010 .

[36]  David R. Clarke,et al.  The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends , 2009 .

[37]  I. Denry,et al.  State of the art of zirconia for dental applications. , 2008, Dental materials : official publication of the Academy of Dental Materials.

[38]  S. Eichhorn,et al.  Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. , 2007, Clinical oral implants research.

[39]  P. Vandenabeele,et al.  Reference database of Raman spectra of biological molecules , 2007 .

[40]  Sylvain Deville,et al.  Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants , 2007 .

[41]  E. Liarokapis,et al.  Micro-Raman and FTIR studies of synthetic and natural apatites. , 2007, Biomaterials.

[42]  P. Chu,et al.  Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition , 2007 .

[43]  John Dell,et al.  Effect of oxidation on the chemical bonding structure of PECVD SiNx thin films , 2006 .

[44]  J. Chevalier,et al.  What future for zirconia as a biomaterial? , 2006, Biomaterials.

[45]  L. Hao,et al.  Osteoblast cell adhesion on a laser modified zirconia based bioceramic , 2005, Journal of materials science. Materials in medicine.

[46]  G Penel,et al.  Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. , 2005, Bone.

[47]  Patrick M. Kelly,et al.  Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .

[48]  A. Rapacz-Kmita,et al.  Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement , 2004 .

[49]  M. C. Poon,et al.  Bonding structures of silicon oxynitride prepared by oxidation of Si-rich silicon nitride , 2004 .

[50]  F. Rustichelli,et al.  Osteointegration of bioactive glass-coated and uncoated zirconia in osteopenic bone: an in vivo experimental study. , 2004, Journal of biomedical materials research. Part A.

[51]  C. Ding,et al.  Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating , 2003 .

[52]  A. Piattelli,et al.  Bone response to zirconia ceramic implants: an experimental study in rabbits. , 2003, The Journal of oral implantology.

[53]  M. Zhong,et al.  Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding , 2003 .

[54]  T. Itoh,et al.  Linear thermal expansion coefficients of amorphous and microcrystalline silicon films , 2002 .

[55]  A. Weisheit,et al.  Laser cladding of turbine blades , 2000 .

[56]  P. Bouvier,et al.  Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman spectrometry , 2000 .

[57]  S. Tanaka,et al.  Assignment of the Raman active vibration modes of β-Si3N4 using micro-Raman scattering , 1999 .

[58]  A. Cittadini,et al.  In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. , 1999, Biomaterials.

[59]  I. Gregora,et al.  Applicability of Raman scattering for the characterization of nanocrystalline silicon , 1999 .

[60]  R. Jeanloz,et al.  High pressure X-ray diffraction study of β-Si3N4 , 1997 .

[61]  A. Chateauminois,et al.  Deposition of a ceramic coating on a thermoplastic polymer by atmospheric plasma and laser cladding , 1996 .

[62]  Y. Hayafuji,et al.  Nitridation of Silicon and Oxidized‐Silicon , 1982 .

[63]  Zafar Iqbal,et al.  Raman scattering from hydrogenated microcrystalline and amorphous silicon , 1982 .

[64]  K. S. Mazdiyasni,et al.  Infrared and Raman Spectra of Zirconia Polymorphs , 1971 .

[65]  T. Clemens,et al.  New insights into the biology of osteocalcin. , 2016, Bone.

[66]  C. Sanz,et al.  Laser Cladding of Vanadium-Carbide Tool Steels for Die Repair , 2011 .

[67]  S. Koutayas,et al.  Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. , 2009, The European journal of esthetic dentistry : official journal of the European Academy of Esthetic Dentistry.

[68]  Karen Esmonde-White Raman Spectroscopy Detection of Molecular Changes Associated with Osteoarthritis. , 2009 .

[69]  O. V. Shevchenko,et al.  Vibrational Analysis and Raman Spectra of Tetragonal Zirconia , 2008 .