Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure

Many aspects of materials deformation and failure are controlled by atomic-scale phenomena that can be explored using molecular statics and molecular dynamics simulations. However, many of these phenomena involve processes on multiple length scales with the result that full molecular statics/molecular dynamics simulations of the entire system are too large to be tractable. In this review, we discuss hybrid models that perform molecular statics/molecular dynamics simulations "without all the atoms," aimed at retaining atomistic detail at a fraction of the computational cost. These methods couple a fully atomistic model in critical regions to regions described by less-expensive continuum methods where they can provide an adequate representation of the important physics. We give an overview of the challenges such models present, with a focus on recent work to address issues of dynamics and finite (non-zero) temperature.

[1]  Robert E. Rudd,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005 .

[2]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid‐surface scattering: Collinear atom/harmonic chain model , 1974 .

[3]  Rajiv K. Kalia,et al.  Coupling Length Scales for Multiscale Atomistics-Continuum Simulations , 2001 .

[4]  Jacob Fish,et al.  Discrete-to-continuum bridging based on multigrid principles , 2004 .

[5]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[6]  Ellad B. Tadmor,et al.  Deformation twinning at aluminum crack tips , 2003 .

[7]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[8]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[9]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[10]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[11]  Efthimios Kaxiras,et al.  From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.

[12]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[13]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[14]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[15]  Ronald E. Miller Direct Coupling of Atomistic and Continuum Mechanics in Computational Materials Science , 2003 .

[16]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[17]  Gregory J. Wagner,et al.  A multiscale projection method for the analysis of carbon nanotubes , 2004 .

[18]  William A. Curtin,et al.  Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .

[19]  J. Molinari,et al.  Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper , 2004 .

[20]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[21]  A. Voter,et al.  Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nosé-Hoover dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  P. Lions,et al.  Atomistic to continuum limits for computational materials science , 2007 .

[23]  Mitchell Luskin,et al.  Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, Multiscale Model. Simul..

[24]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[25]  Zhou,et al.  Dislocation nucleation and crack stability: Lattice Green's-function treatment of cracks in a model hexagonal lattice. , 1993, Physical review. B, Condensed matter.

[26]  T. Belytschko,et al.  Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation , 1982 .

[27]  Z. Bažant,et al.  SPURIOUS REFLECTION OF ELASTIC WAVES IN NONUNIFORM FINITE ELEMENT GRIDS , 1978 .

[28]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[29]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[30]  Ting Zhu,et al.  Quantifying the early stages of plasticity through nanoscale experiments and simulations , 2003 .

[31]  G. Zanzotto On the material symmetry group of elastic crystals and the Born Rule , 1992 .

[32]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[33]  Mark S. Shephard,et al.  Composite Grid Atomistic Continuum Method: An Adaptive Approach to Bridge Continuum with Atomistic Analysis , 2004 .

[34]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[35]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[36]  Michael P Marder,et al.  Cracks and Atoms , 1999 .

[37]  J. Tinsley Oden,et al.  Error Control for Molecular Statics Problems , 2006 .

[38]  Holian,et al.  Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.

[39]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[40]  Smith,et al.  Multiscale simulation of loading and electrical resistance in silicon nanoindentation , 2000, Physical review letters.

[41]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[42]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[43]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[44]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[45]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[46]  A. Nakano,et al.  Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels. , 2001, Physical review letters.

[47]  Jimmie D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: Inelastic studies , 1975 .

[48]  M. Pitteri On the kinematics of mechanical twinning in crystals , 1985 .

[49]  I. Yamada,et al.  Simulation of cluster impacts on silicon surface , 1997 .

[50]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[51]  J. Reddy An introduction to the finite element method , 1989 .

[52]  Pingwen Zhang,et al.  Frontiers and prospects of contemporary applied mathematics , 2006 .

[53]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[54]  Emily A. Carter,et al.  Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation , 2004 .

[55]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[56]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[57]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[58]  E Weinan,et al.  Multiscale simulations in simple metals: A density-functional-based methodology , 2004, cond-mat/0404414.

[59]  Noam Bernstein,et al.  Dynamic Fracture of Silicon: Concurrent Simulation of Quantum Electrons, Classical Atoms, and the Continuum Solid , 2000 .

[60]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[61]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[62]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[63]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[64]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[65]  Jean-François Molinari,et al.  Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasicontinuum study , 2005 .

[66]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[67]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[68]  M. Finnis,et al.  Thermal excitation of electrons in energetic displacement cascades. , 1991, Physical review. B, Condensed matter.

[69]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[70]  E. Kaxiras,et al.  Polarization switching in PbTiO3: an ab initio finite element simulation , 2002 .

[71]  Ronald E. Miller,et al.  Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings , 2006 .

[72]  William A. Curtin,et al.  A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .

[73]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[74]  M. Ortiz,et al.  Effect of indenter-radius size on Au(001) nanoindentation. , 2003, Physical review letters.

[75]  J. Molinari,et al.  Multiscale modeling of two-dimensional contacts. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[77]  Huajian Gao,et al.  Crack nucleation and growth as strain localization in a virtual-bond continuum , 1998 .

[78]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[79]  Shaoxing Qu,et al.  A finite-temperature dynamic coupled atomistic/discrete dislocation method , 2005 .

[80]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[81]  J. Z. Zhu,et al.  The finite element method , 1977 .